37,161 research outputs found

    Factors determining patients’ intentions to use point-of-care testing medical devices for self-monitoring: The case of international normalised ratio self-testing

    Get PDF
    This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. - Copyright @ 2012 Dove Medical Press LtdThis article has been made available through the Brunel Open Access Publishing Fund.Purpose: To identify factors that determine patients' intentions to use point-of-care medical devices, ie, portable coagulometer devices for self-testing of the international normalized ratio (INR) required for ongoing monitoring of blood-coagulation intensity among patients on long-term oral anticoagulation therapy with vitamin K antagonists, eg, warfarin. Methods: A cross-sectional study that applied the technology-acceptance model through a self-completed questionnaire, which was administered to a convenience sample of 125 outpatients attending outpatient anticoagulation services at a district general hospital in London, UK. Data were analyzed using descriptive statistics, factor analyses, and structural equation modeling. Results: The participants were mainly male (64%) and aged ≥ 71 years (60%). All these patients were attending the hospital outpatient anticoagulation clinic for INR testing; only two patients were currently using INR self-testing, 84% of patients had no knowledge about INR self-testing using a portable coagulometer device, and 96% of patients were never offered the option of the INR self-testing. A significant structural equation model explaining 79% of the variance in patients’ intentions to use INR self-testing was observed. The significant predictors that directly affected patients' intention to use INR self-testing were the perception of technology (β = 0.92, P < 0.001), trust in doctor (β = −0.24, P = 0.028), and affordability (β = 0.15, P = 0.016). In addition, the perception of technology was significantly affected by trust in doctor (β = 0.43, P = 0.002), age (β = −0.32, P < 0.001), and affordability (β = 0.23, P = 0.013); thereby, the intention to use INR self-testing was indirectly affected by trust in doctor (β = 0.40), age (β = −0.29), and affordability (β = 0.21) via the perception of technology. Conclusion: Patients’ intentions to use portable coagulometers for INR self-testing are affected by patients' perceptions about the INR testing device, the cost of device, trust in doctors/clinicians, and the age of the patient, which need to be considered prior to any intervention involving INR self-testing by patients. Manufacturers should focus on increasing the affordability of INR testing devices for patients’ self-testing and on the potential role of medical practitioners in supporting use of these medical devices as patients move from hospital to home testing.This study is funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) program (EPSRC grant EP/GO12393/1)

    QQˉQ\bar Q (Q∈{b,c}Q\in \{b, c\}) spectroscopy using Cornell potential

    Full text link
    The mass spectra and decay properties of heavy quarkonia are computed in nonrelativistic quark-antiquark Cornell potential model. We have employed the numerical solution of Schr\"odinger equation to obtain their mass spectra using only four parameters namely quark mass (mcm_c, mbm_b) and confinement strength (AccˉA_{c\bar c}, AbbˉA_{b\bar b}). The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are computed perturbatively to determine the mass spectra of excited SS, PP, DD and FF states. Digamma, digluon and dilepton decays of these mesons are computed using the model parameters and numerical wave functions. The predicted spectroscopy and decay properties for quarkonia are found to be consistent with available experimental observations and results from other theoretical models. We also compute mass spectra and life time of the BcB_c meson without additional parameters. The computed electromagnetic transition widths of heavy quarkonia and BcB_c mesons are in tune with available experimental data and other theoretical approaches

    A technique for correcting ERTS data for solar and atmospheric effects

    Get PDF
    The author has identified the following significant results. Based on processing ERTS CCTs and ground truth measurements collected on Michigan test site for January through June 1973 the following results are reported: (1) atmospheric transmittance varies from: 70 to 85% in band 4, 77 to 90% in band 5, 80 to 94% in band 6, and 84 to 97% in band 7 for one air mass; (2) a simple technique was established to determine atmospheric scattering seen by ERTS-1 from ground-based measurements of sky radiance. For March this scattering was found to be equivalent to that produced by a target having a reflectance of 11% in band 4, 5% in band 5, 3% in band 6, and 1% in band 7; (3) computer ability to classify targets under various atmospheric conditions was determined. Classification accuracy on some targets (i.e. bare soil, tended grass, etc.) hold up even under the most severe atmospheres encountered, while performance on other targets (trees, urban, rangeland, etc.) degrades rapidly when atmospheric conditions change by the smallest amount

    Bioalcohol As Green Energy -A review

    Get PDF
    Bioethanol has now become a big industry and this industry seems to become much bigger in the near future. People regard bioethanol as renewable and sustainable new energy source, although some contraversies such as the rivalry of bioethanol for human food widely exist. Actually, bioethanol can also be a good source of basic raw materials. In early days, ethylene, the most important organic chemical raw material, was produced from dehydration of ethanol. Later, things reversed as petrochemical industry well developed after World War II, when industrial ethanol was mostly produced mainly via hydration of ethylene. Now that bioethanol has already become an important fuel blender, we should well expect that bioethanol should also be new resources for basic organic raw materials, as well as other more valuable fine and specialty chemicals, instead of merely a fuel blender. Nowadays, countless new bioethanol companies are setting up every day. It should lead to more research on bioethanol also as a starting raw chemical material

    Simulation of Thematic Mapper performance as a function of sensor scanning parameters

    Get PDF
    The investigation and results of the Thematic Mapper Instrument Performance Study are described. The Thematic Mapper is the advanced multispectral scanner initially planned for the Earth Observation Satellite and now planned for LANDSAT D. The use of existing digital airborne scanner data obtained with the Modular Multispectral Scanner (M2S) at Bendix provided an opportunity to simulate the effects of variation of design parameters of the Thematic Mapper. Analysis and processing of this data on the Bendix Multispectral Data Analysis System were used to empirically determine categorization performance on data generated with variations of the sampling period and scan overlap parameters of the Thematic Mapper. The Bendix M2S data, with a 2.5 milliradian instantaneous field of view and a spatial resolution (pixel size) of 10-m from 13,000 ft altitude, allowed a direct simulation of Thematic Mapper data with a 30-m resolution. The flight data chosen were obtained on 30 June 1973 over agricultural test sites in Indiana

    Balancing Local Order and Long-Ranged Interactions in the Molecular Theory of Liquid Water

    Full text link
    A molecular theory of liquid water is identified and studied on the basis of computer simulation of the TIP3P model of liquid water. This theory would be exact for models of liquid water in which the intermolecular interactions vanish outside a finite spatial range, and therefore provides a precise analysis tool for investigating the effects of longer-ranged intermolecular interactions. We show how local order can be introduced through quasi-chemical theory. Long-ranged interactions are characterized generally by a conditional distribution of binding energies, and this formulation is interpreted as a regularization of the primitive statistical thermodynamic problem. These binding-energy distributions for liquid water are observed to be unimodal. The gaussian approximation proposed is remarkably successful in predicting the Gibbs free energy and the molar entropy of liquid water, as judged by comparison with numerically exact results. The remaining discrepancies are subtle quantitative problems that do have significant consequences for the thermodynamic properties that distinguish water from many other liquids. The basic subtlety of liquid water is found then in the competition of several effects which must be quantitatively balanced for realistic results.Comment: 8 pages, 6 figure

    Computer Mapping of Water Quality in Saginaw Bay with LANDSAT Digital Data

    Get PDF
    The author has identified the following significant results. LANDSAT digital data and ground truth measurements for Saginaw Bay (Lake Huron), Michigan, for 31 July 1975 were correlated by stepwise linear regression and the resulting equations used to estimate invisible water quality parameters in nonsampled areas. Chloride, conductivity, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a were best correlated with the ratio of LANDSAT Band 4 to Band 5. Temperature and Secchi depth correlate best with Band 5
    • …
    corecore