2,339 research outputs found
Effect of reaction control system jet-flow field interactions on a 0.015 scale model space shuttle orbiter aerodynamic characteristics
The effects of the reaction control system (RCS) jet-flow field interactions on the space shuttle orbiter system during entry are discussed. The primary objective of the test program was to obtain data for the shuttle orbiter configuration to determine control amplification factors resulting from jet interaction between the RCS plumes and the external flow over the vehicle. A secondary objective was to provide data for comparison and improvement of analytic jet interaction prediction techniques. The test program was divided into two phases; (1) force and moment measurements were made with and without RCS blowing, investigating environment parameters (R sub e, Alpha, Beta), RCS plume parameters (Jet pressure ratio, momentum ratio and thrust level), and geometry parameters (RCS pod locations) on the orbiter model, (2) oil flow visualization tests were conducted on a dummy balance at the end of the test
SPS and LEP controls, status and evolution towards the LHC era
LEP was the first CERN accelerator to be built with a Control System based largely on off-the-shelf technology. Operational experience has confirmed the strategies of the original design. However, to maintain this system, components have to be renewed and in order to meet the increasing user demands the system requires continuous investment. These factors have ensured that the Control System is still based on a modern computer infrastructure and the recent extension to the SPS machine and its Experimental Areas has been achieved without any specific developments of the basic infrastructure. Increasingly, complete industrial systems are replacing old and obsolete equipment of the accelerators and technical services. Strategies are evolving to interface and progressively integrate Industrial Control Systems into the existing infrastructure. We present a status report of the Control System today and describe the current work to upgrade and prepare it for future applications in the LHC era
Space shuttle orbiter rear mounted reaction control system jet interaction study
The effect of interaction between the reaction control system (RCS) jets and the flow over the space shuttle orbiter in the atmosphere was investigated in the NASA Langley 31-inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 and in the AEDC continuous flow hypersonic tunnel B at a nominal Mach number of 6, using 0.01 and .0125 scale force models with aft RCS nozzles mounted both on the model and on the sting of the force model balance. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter when the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms
Space shuttle orbiter reaction control system jet interaction study
The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms
Space shuttle orbiter reaction control system interactions with the vehicle flow field
Test data on the effect of the interaction between the space shuttle orbiter rear-mounted reaction control system jets and the flow over the vehicle in the atmosphere are analyzed with particular attention to yaw angle effects. Masted tank-plus-orbiter jet interactions resulting from combinations of forward and rear-mounted reaction control jets being fired prior to external tank staging are also documented. The primary correlating parameter used for the mated data is a single-jet momentum ratioed to free-stream momentum. An analytic model for computing reaction control system interactions for all control combinations used for mated vehicle coast is included
Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes Aerodynamics
An unsteady, 3D, implicit upwind Euler/Navier-Stokes algorithm is here used to compute the flutter characteristics of Wing 445.6, the AGARD standard aeroelastic configuration for dynamic response, with a view to the discrepancy between Euler characteristics and experimental data. Attention is given to effects of fluid viscosity, structural damping, and number of structural model nodes. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. The V-g analysis indicates that fluid viscosity has a significant effect on the supersonic flutter boundary for this wing
Ground-State SiO Maser Emission Toward Evolved Stars
We have made the first unambiguous detection of vibrational ground-state
maser emission from SiO toward six evolved stars. Using the Very Large Array,
we simultaneously observed the v=0, J=1-0, 43.4-GHz, ground-state and the v=1,
J=1-0, 43.1-GHz, first excited-state transitions of SiO toward the oxygen-rich
evolved stars IRC+10011, o Ceti, W Hya, RX Boo, NML Cyg, and R Cas and the
S-type star chi Cyg. We detected at least one v=0 SiO maser feature from six of
the seven stars observed, with peak maser brightness temperatures ranging from
10,000 K to 108,800 K. In fact, four of the seven v=0 spectra show multiple
maser peaks, a phenomenon which has not been previously observed. Ground-state
thermal emission was detected for one of the stars, RX Boo, with a peak
brightness temperature of 200 K. Comparing the v=0 and the v=1 transitions, we
find that the ground-state masers are much weaker with spectral characteristics
different from those of the first excited-state masers. For four of the seven
stars the velocity dispersion is smaller for the v=0 emission than for the v=1
emission, for one star the dispersions are roughly equivalent, and for two
stars (one of which is RX Boo) the velocity spread of the v=0 emission is
larger. In most cases, the peak flux density in the v=0 emission spectrum does
not coincide with the v=1 maser peak. Although the angular resolution of these
VLA observations were insufficient to completely resolve the spatial structure
of the SiO emission, the SiO spot maps produced from the interferometric image
cubes suggest that the v=0 masers are more extended than their v=1
counterparts
Unexpected Features of Supersymmetry with Central Charges
It is shown that N=2 supersymmetric theories with central charges present
some hidden quartic symmetry. This enables us to construct representations of
the quartic structure induced by superalgebra representations.Comment: 14 pages, more details have been given, to appear in J. Phys.
- …