57,782 research outputs found
Radiation force on relativistic jets in active galactic nuclei
Radiative deceleration of relativistic jets in active galactic nuclei as the
result of inverse Compton scattering of soft photons from accretion discs is
discussed. The Klein-Nishina (KN) cross section is used in the calculation of
the radiation force due to inverse Compton scattering. Our result shows that
deceleration due to scattering in the KN regime is important only for jets
starting with a bulk Lorentz factor larger than 1000. When the bulk Lorentz
factor satisfies this condition, particles scattering in the Thomson regime
contribute positively to the radiation force (acceleration), but those
particles scattering in the KN regime are dominant and the overall effect is
deceleration. In the KN limit, the drag due to Compton scattering, though less
severe than in the Thomson limit, strongly constrains the bulk Lorentz factor.
Most of the power from the deceleration goes into radiation and hence the
ability of the jet to transport significant power (in particle kinetic energy)
out of the subparsec region is severely limited. The deceleration efficiency
decreases significantly if the jet contains protons and the proton to electron
number density ratio satisfies the condition where is the minimum Lorentz factor of
relativistic electrons (or positrons) in the jet frame and is the
proton to electron mass ratio.Comment: 10 pages including 8 figures; accepted for publication in MNRA
Linear and Non Linear Effects on the Newtonian Gravitational Constant as deduced from the Torsion Balance
The Newtonian gravitational constant has still 150 parts per million of
uncertainty. This paper examines the linear and nonlinear equations governing
the rotational dynamics of the torsion gravitational balance. A nonlinear
effect modifying the oscillation period of the torsion gravitational balance is
carefully explored.Comment: 11 pages, 2 figure
Thermodynamical quantities of lattice full QCD from an efficient method
I extend to QCD an efficient method for lattice gauge theory with dynamical
fermions. Once the eigenvalues of the Dirac operator and the density of states
of pure gluonic configurations at a set of plaquette energies (proportional to
the gauge action) are computed, thermodynamical quantities deriving from the
partition function can be obtained for arbitrary flavor number, quark masses
and wide range of coupling constants, without additional computational cost.
Results for the chiral condensate and gauge action are presented on the
lattice at flavor number , 1, 2, 3, 4 and many quark masses and coupling
constants. New results in the chiral limit for the gauge action and its
correlation with the chiral condensate, which are useful for analyzing the QCD
chiral phase structure, are also provided.Comment: Latex, 11 figures, version accepted for publicatio
TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer.
TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53
Australian Fathers\u27 Study: What influences paternal engagement with antenatal care?
This mixed-methods study explores factors associated with and levels of engagement of fathers in antenatal care. One hundred expectant fathers were recruited from antenatal clinics and community settings in Western Australia. They completed validated questionnaires. Eighty-three percent of expectant fathers reported a lack of engagement with antenatal care. Factors significantly associated with lack of engagement in multivariate analysis were working more than 40 hours a week and lack of adequate consultation by antenatal care staff. In qualitative analysis, 6 themes emerged in association with a lack of engagement. They were role in decision making, time pressures, the observer effect, lack of knowledge, barriers to attendance, and feeling unprepared or anxious. Care providers should involve fathers in consultations to improve paternal engagement
Geographic and Seasonal Distributions of CO Transport Pathways and Their Roles in Determining CO Centers in the Upper Troposphere
Past studies have identified a variety of pathways by which carbon monoxide (CO) may be transported from the surface to the tropical upper troposphere (UT); however, the relative roles that these transport pathways play in determining the distribution and seasonality of CO in the tropical UT remain unclear. We have developed a method to automate the identification of two pathways ('local convection' and 'advection within the lower troposphere (LT) followed by convective vertical transport') involved in CO transport from the surface to the UT. This method is based on the joint application of instantaneous along-track, co-located, A-Train satellite measurements. Using this method, we find that the locations and seasonality of the UT CO maxima in the tropics were strongly correlated with the frequency of local convective transport during 2007. We also find that the 'local convection' pathway (convective transport that occurred within a fire region) typically transported significantly more CO to the UT than the 'LT advection -> convection' pathway (advection of CO within the LT from a fire region to a convective region prior to convective transport). To leading order, the seasonality of CO concentrations in the tropical UT reflected the seasonality of the 'local convection' transport pathway during 2007. The UT CO maxima occurred over Central Africa during boreal spring and over South America during austral spring. Occurrence of the 'local convection' transport pathway in these two regions also peaked during these seasons. During boreal winter and summer, surface CO emission and convection were located in opposite hemispheres, which limited the effectiveness of transport to the UT. During these seasons, CO transport from the surface to the UT typically occurred via the 'LT advection -> convection' pathway.NASA Aura Science Team NNX09AD85GJackson School of Geosciences at the University of Texas at AustinNASA Jet Propulsion Laboratory at the California Institute of TechnologyGeological Science
Bound States and Critical Behavior of the Yukawa Potential
We investigate the bound states of the Yukawa potential , using different algorithms: solving the Schr\"odinger
equation numerically and our Monte Carlo Hamiltonian approach. There is a
critical , above which no bound state exists. We study the
relation between and for various angular momentum quantum
number , and find in atomic units, , with , ,
, and .Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in
China
Packing Fractions and Maximum Angles of Stability of Granular Materials
In two-dimensional rotating drum experiments, we find two separate influences
of the packing fraction of a granular heap on its stability. For a fixed grain
shape, the stability increases with packing fraction. However, in determining
the relative stability of different grain shapes, those with the lowest average
packing fractions tend to form the most stable heaps. We also show that only
the configuration close to the surface of the pile figures prominently.Comment: 4 pages, 4 figure
- …