3,234 research outputs found

    Nonequilibrium Stationary States and Phase Transitions in Directed Ising Models

    Full text link
    We study the nonequilibrium properties of directed Ising models with non conserved dynamics, in which each spin is influenced by only a subset of its nearest neighbours. We treat the following models: (i) the one-dimensional chain; (ii) the two-dimensional square lattice; (iii) the two-dimensional triangular lattice; (iv) the three-dimensional cubic lattice. We raise and answer the question: (a) Under what conditions is the stationary state described by the equilibrium Boltzmann-Gibbs distribution? We show that for models (i), (ii), and (iii), in which each spin "sees" only half of its neighbours, there is a unique set of transition rates, namely with exponential dependence in the local field, for which this is the case. For model (iv), we find that any rates satisfying the constraints required for the stationary measure to be Gibbsian should satisfy detailed balance, ruling out the possibility of directed dynamics. We finally show that directed models on lattices of coordination number z8z\ge8 with exponential rates cannot accommodate a Gibbsian stationary state. We conjecture that this property extends to any form of the rates. We are thus led to the conclusion that directed models with Gibbsian stationary states only exist in dimension one and two. We then raise the question: (b) Do directed Ising models, augmented by Glauber dynamics, exhibit a phase transition to a ferromagnetic state? For the models considered above, the answers are open problems, to the exception of the simple cases (i) and (ii). For Cayley trees, where each spin sees only the spins further from the root, we show that there is a phase transition provided the branching ratio, qq, satisfies q3q \ge 3

    TRAVOS: Trust and Reputation in the Context of Inaccurate Information Sources

    No full text
    In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for another, may betray that trust by not performing the action as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. There is therefore a need to develop a model of trust and reputation that will ensure good interactions among software agents in large scale open systems. Against this background, we have developed TRAVOS (Trust and Reputation model for Agent-based Virtual OrganisationS) which models an agent's trust in an interaction partner. Specifically, trust is calculated using probability theory taking account of past interactions between agents, and when there is a lack of personal experience between agents, the model draws upon reputation information gathered from third parties. In this latter case, we pay particular attention to handling the possibility that reputation information may be inaccurate

    Statistics of quantum transmission in one dimension with broad disorder

    Full text link
    We study the statistics of quantum transmission through a one-dimensional disordered system modelled by a sequence of independent scattering units. Each unit is characterized by its length and by its action, which is proportional to the logarithm of the transmission probability through this unit. Unit actions and lengths are independent random variables, with a common distribution that is either narrow or broad. This investigation is motivated by results on disordered systems with non-stationary random potentials whose fluctuations grow with distance. In the statistical ensemble at fixed total sample length four phases can be distinguished, according to the values of the indices characterizing the distribution of the unit actions and lengths. The sample action, which is proportional to the logarithm of the conductance across the sample, is found to obey a fluctuating scaling law, and therefore to be non-self-averaging, in three of the four phases. According to the values of the two above mentioned indices, the sample action may typically grow less rapidly than linearly with the sample length (underlocalization), more rapidly than linearly (superlocalization), or linearly but with non-trivial sample-to-sample fluctuations (fluctuating localization).Comment: 26 pages, 4 figures, 1 tabl

    Enhanced quantum tunnelling induced by disorder

    Full text link
    We reconsider the problem of the enhancement of tunnelling of a quantum particle induced by disorder of a one-dimensional tunnel barrier of length LL, using two different approximate analytic solutions of the invariant imbedding equations of wave propagation for weak disorder. The two solutions are complementary for the detailed understanding of important aspects of numerical results on disorder-enhanced tunnelling obtained recently by Kim et al. (Phys. rev. B{\bf 77}, 024203 (2008)). In particular, we derive analytically the scaled wavenumber (kL)(kL)-threshold where disorder-enhanced tunnelling of an incident electron first occurs, as well as the rate of variation of the transmittance in the limit of vanishing disorder. Both quantities are in good agreement with the numerical results of Kim et al. Our non-perturbative solution of the invariant imbedding equations allows us to show that the disorder enhances both the mean conductance and the mean resistance of the barrier.Comment: 10 page

    Dynamics at the angle of repose: jamming, bistability, and collapse

    Full text link
    When a sandpile relaxes under vibration, it is known that its measured angle of repose is bistable in a range of values bounded by a material-dependent maximal angle of stability; thus, at the same angle of repose, a sandpile can be stationary or avalanching, depending on its history. In the nearly jammed slow dynamical regime, sandpile collapse to a zero angle of repose can also occur, as a rare event. We claim here that fluctuations of {\it dilatancy} (or local density) are the key ingredient that can explain such varied phenomena. In this work, we model the dynamics of the angle of repose and of the density fluctuations, in the presence of external noise, by means of coupled stochastic equations. Among other things, we are able to describe sandpile collapse in terms of an activated process, where an effective temperature (related to the density as well as to the external vibration intensity) competes against the configurational barriers created by the density fluctuations.Comment: 15 pages, 1 figure. Minor changes and update

    Competition and cooperation:aspects of dynamics in sandpiles

    Full text link
    In this article, we review some of our approaches to granular dynamics, now well known to consist of both fast and slow relaxational processes. In the first case, grains typically compete with each other, while in the second, they cooperate. A typical result of {\it cooperation} is the formation of stable bridges, signatures of spatiotemporal inhomogeneities; we review their geometrical characteristics and compare theoretical results with those of independent simulations. {\it Cooperative} excitations due to local density fluctuations are also responsible for relaxation at the angle of repose; the {\it competition} between these fluctuations and external driving forces, can, on the other hand, result in a (rare) collapse of the sandpile to the horizontal. Both these features are present in a theory reviewed here. An arena where the effects of cooperation versus competition are felt most keenly is granular compaction; we review here a random graph model, where three-spin interactions are used to model compaction under tapping. The compaction curve shows distinct regions where 'fast' and 'slow' dynamics apply, separated by what we have called the {\it single-particle relaxation threshold}. In the final section of this paper, we explore the effect of shape -- jagged vs. regular -- on the compaction of packings near their jamming limit. One of our major results is an entropic landscape that, while microscopically rough, manifests {\it Edwards' flatness} at a macroscopic level. Another major result is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction

    The ART of IAM: The Winning Strategy for the 2006 Competition

    No full text
    In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)

    Surface Properties of Aperiodic Ising Quantum Chains

    Full text link
    We consider Ising quantum chains with quenched aperiodic disorder of the coupling constants given through general substitution rules. The critical scaling behaviour of several bulk and surface quantities is obtained by exact real space renormalization.Comment: 4 pages, RevTex, reference update
    corecore