5,370 research outputs found

    Study of thin film large area photovoltaic solar energy converter Third quarterly report, 25 Apr. - 24 Jul. 1966

    Get PDF
    Cadmium sulfide-thin film large area photovoltaic solar energy converter - plastic substrate cell fabrication and stability testing under various conditions of temperature and humidit

    Development of cadmium sulfide thin film photovoltaic cells third quarterly report, apr. 15 - jul. 14, 1965

    Get PDF
    Cadmium sulfide thin film photovoltaic cells - cadmium sulfide film evaporation, cell testing, improvement, and stability, and plastic and metal substrate cell

    CdS solar cell development Interim technical report

    Get PDF
    Cadmium sulfide solar cell design criteri

    Temperature Anisotropies and Distortions Induced by Hot Intracluster Gas on the Cosmic Microwave Background

    Get PDF
    The power spectrum of temperature anisotropies induced by hot intracluster gas on the cosmic background radiation is calculated. For low multipoles it remains constant while at multipoles above l>2000l>2000 it is exponentially damped. The shape of the radiation power spectrum is almost independent of the average intracluster gas density profile, gas evolution history or clusters virial radii; but the amplitude depends strongly on those parameters and could be as large as 20% that of intrinsic contribution. The exact value depends on the global properties of the cluster population and the evolution of the intracluster gas. The distortion on the Cosmic Microwave Background black body spectra varies in a similar manner. The ratio of the temperature anisotropy to the mean Comptonization parameters is shown to be almost independent of the cluster model and, in first approximation, depends only on the number density of clusters.Comment: 10 pages, Latex, 3 figures; to be published in Ap

    Catalog of Galaxy Morphology in Four Rich Clusters: Luminosity Evolution of Disk Galaxies at 0.33<z<0.83

    Full text link
    Hubble Space Telescope (HST) imaging of four rich, X-ray luminous, galaxy clusters (0.33<z<0.83) is used to produce quantitative morphological measurements for galaxies in their fields. Catalogs of these measurements are presented for 1642 galaxies brighter than F814W(AB)=23.0 . Galaxy luminosity profiles are fitted with three models: exponential disk, de Vaucouleurs bulge, and a disk-plus-bulge hybrid model. The best fit is selected and produces a quantitative assessment of the morphology of each galaxy: the principal parameters derived being B/T, the ratio of bulge to total luminosity, the scale lengths and half-light radii, axial ratios, position angles and surface brightnesses of each component. Cluster membership is determined using a statistical correction for field galaxy contamination, and a mass normalization factor (mass within boundaries of the observed fields) is derived for each cluster. In the present paper, this catalog of measurements is used to investigate the luminosity evolution of disk galaxies in the rich-cluster environment. Examination of the relations between disk scale-length and central surface brightness suggests, under the assumption that these clusters represent a family who share a common evolutionary history and are simply observed at different ages, that there is a dramatic change in the properties of the small disks (h < 2 kpc). This change is best characterized as a change in surface brightness by about 1.5 magnitude between z=0.3 and z=0.8 with brighter disks at higher redshifts.Comment: 53 pages, including 13 figures and 7 tables. Accepted for publication in the Astrophysical Journal Supplement Serie

    Chandra Observations of low velocity dispersion groups

    Full text link
    Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus luminosity of the intragroup gas. Given this, groups should also should show a steep relationship between X-ray luminosity and velocity dispersion. However, previous work suggests that this is not the case with many measuring slopes flatter than the cluster relation. Examining the group L_X:\sigma relation shows that much of the flattening is caused by a small subset of groups which show very high X-ray luminosities for their velocity dispersions (or vice versa). Detailed Chandra study of two such groups shows that earlier ROSAT results were subject to significant (~30-40%) point source contamination, but confirm that a significant hot IGM is present in these groups, although these are two of the coolest systems in which intergalactic X-ray emission has been detected. Their X-ray properties are shown to be broadly consistent with those of other galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its X-ray luminosity correspondingly high for its temperature, compared to most groups. This leads us to suggest that the velocity dispersion in these systems has been reduced in some way, and we consider how this might have come about.Comment: Accepted for publication in Ap
    corecore