18,132 research outputs found
Cryogenic insulation technology review for the space shuttle
Cryogenic insulation systems for space shuttl
Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles
Three reusable insulation systems concepts were developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, loadbearing insulation (LBI). Thermal performance measurements were made under space-hold (vacuum) conditions for insulating warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately 0.00008 W/m-K (W = weight,Kg; m = measured; K = temperature) for the MLI systems (liquid hydrogen test results) and 0.00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature)
Wake Vortex Attenuation Flight Tests: A Status Report
Flight tests were conducted to evaluate the magnitude of aerodynamic attenuation of the wake vortices of large transport aircraft that can be achieved through the use of static spoiler deflection and lateral control oscillation. These methods of attenuation were tested on Boeing B-747 and Lockheed L-1011 commercial transport aircraft. Evaluations were made using probe aircraft, photographic and visual observations, and ground based measurements of the vortex velocity profiles. The magnitude of attenuation resulting from static spoiler deflection was evaluated both in and out of ground effect. A remotely piloted QF-86 drone aircraft was used to probe the attenuated vortices in flight in and out of ground effect, and to make landings behind an attenuated B-747 airplane at reduced separation distances
ICF core sets for low back pain: do they include what matters to patients?
To investigate whether the International Classification of Functioning Disability and Health (ICF) Core Sets for low back pain encompass the key functional problems of patients
Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application
Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application
Improved fiberglass-to-metal joint produces lighter stronger fiberglass strut
Axial tension and compression are transmitted between end fittings and fiberglass tube without depending on glass-to-metal bonding, conventional fasteners or combination of these things. Joint design significantly reduces both structural weight of strut and its cross-sectional area
Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths
A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria
Frictional systems under periodic loads - History-dependence, non-uniqueness and energy dissipation
Nominally static contacts such as bolted or shrink-fit joints typically experience regions of microslip when subjected to oscillatory loading. This results in energy dissipation, reflected as apparent hysteretic damping of the system, and also may cause the initiation of fretting fatigue cracks. Early theoretical studies of the Hertzian contact problem by Cattaneo and Mindlin were confirmed experimentally by Johnson, who identified signs of fretting damage in the slip annulus predicted by the theory. For many years, tribologists assumed that Melan's theorem in plasticity could be extended to frictional systems — i.e. that if there exists a state of residual stress associated with frictional slip that is sufficient to prevent periodic slip in the steady state, then the system will shake down, regardless of the initial condition. However, we now know that this is true only if there is no coupling between the normal and tangential loading problems, as will be the case notably when contact occurs on a symmetry plane. For all other cases, periodic loading scenarios can be devised such that shakedown occurs for some initial conditions and not for others. The initial condition here might be determined by the assembly protocol — e.g. the order in which a set of bolts is tightened — or by the exact loading path before the steady cycle is attained. This non-uniqueness of the steady state persists at load amplitudes above the shakedown limit, in which case there is always some dissipation, but the dissipation per cycle (and hence both the effective damping and the susceptibility to fretting damage) depends on the initial conditions. This implies that fretting fatigue experiments need to follow a well-defined assembly protocol if reproducible results are to be obtained. We shall also present results showing that when both normal and tangential forces vary in time, the energy dissipation is very sensitive to the relative phase of the oscillatory components, being greatest when they are out of phase. With sufficient clamping force, 'complete' contacts (i.e. those in which the contact area is independent of the normal load) can theoretically be prevented from slipping, but on the microscale, all contacts are incomplete because of surface roughness and some microslip is inevitable. In this case, the local energy dissipation density can be estimated from relatively coarse-scale roughness models, based on a solution of the corresponding 'full stick' problem.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98634/1/1742-6596_382_1_012002.pd
- …