30 research outputs found

    Samarium Magnetism Studied on SmPd2Al3 Single Crystal

    Full text link
    In this paper, specific features of Sm magnetism in an intermetallic compound have been studied. For this purpose, a high-quality single crystal of SmPd2Al3 was grown and subjected to detailed measurements of specific heat, magnetization, ac susceptibility, and electrical resistivity with respect to temperature and a magnetic field applied along the principal crystallographic directions. SmPd2Al3 magnetism was found to be strongly anisotropic with the easy-magnetization direction along the c axis where the main magnetic features are concentrated. The a-axis response remains weak, paramagneticlike, even in the magnetically ordered state. Ferromagnetism with TC=12.4 K has been indicated by all the measured physical properties. At lower temperatures, three successive order-order phase transitions have been observed on the temperature dependence of the specific heat as three anomalies: at 3.4, 3.9, and 4.4 K, respectively. The low-temperature magnetization data can be understood within a scenario that considers the antiferromagnetic ground state as being gradually destroyed through a series of four metamagnetic transitions at 0.03, 0.35, 0.5, and 0.75 T, as detected in the 1.8 K magnetization data. The experimental data are discussed together with the results of electronic-structure and crystal-field calculations from first principles, which were performed as an important part of the study for comprehension and explanation of the observed behavior of the SmPd2Al3 compound

    Pressure Evolution of Magnetism in URhGa

    Full text link
    In this paper, we report the results of an ambient and high pressure study of a 5f-electron ferromagnet URhGa. The work is focused on measurements of magnetic and thermodynamic properties of a single crystal sample and on the construction of the p-T phase diagram. Diamond anvil cells were employed to measure the magnetization and electrical resistivity pressures up to ~ 9 GPa. At ambient pressure, URhGa exhibits collinear ferromagnetic ordering of uranium magnetic moments {\mu}U ~ 1.1 {\mu}B (at 2 K) aligned along the c-axis of the hexagonal crystal structure below the Curie temperature TC = 41K. With the application of pressure up to 5GPa the ordering temperature TC initially increases whereas the saturated moment slightly decreases. The rather unexpected evolution is put in the context of the UTX family of compounds.Comment: arXiv admin note: text overlap with arXiv:1611.0327

    Physics of Polymorphic Transitions in CeRuSn

    Full text link
    We report a detailed study of the polymorphic transitions in ternary stannide CeRuSn on high quality single crystals through a combination of X-ray diffraction experiments conducted at 300, 275 and 120 K, and measurements of the thermal expansion, magnetization, and resistivity, along main crystallographic axes. In addition, the transition was followed as a function of pressure up to 0.8 GPa. The present X-ray diffraction data show that the room temperature polymorph consists of the lattice doubled along the c axis with respect to the CeCoAl-type structure consistent with previous reports. Upon cooling, the compound undergoes two successive transitions, first to a quintuple (290 K) and than to a triple CeCoAl superstructure at 225 K. The transitions are accompanied by a tremendous volume change due to a strong shrinking of the lattice along the c axis, which is clearly observed in thermal expansion. We advance arguments that the volume collapse originates from an increasing number of crystallographically inequivalent Ce sites and the change of ratio between the short and long Ce-Ru bonds. The observed properties of the polymorphic transition in CeRuSn are reminiscent of the transition in elementary Cerium, suggesting that similar physics, i.e., a Kondo influenced transition and strong lattice vibrations might be the driving forces

    Infrared and THz studies of polar phonons and improper magnetodielectric effect in multiferroic BFO3 ceramics

    Full text link
    BFO3 ceramics were investigated by means of infrared reflectivity and time domain THz transmission spectroscopy at temperatures 20 - 950 K, and the magnetodielectric effect was studied at 10 - 300 K, with the magnetic field up to 9 T. Below 175 K, the sum of polar phonon contributions into the permittivity corresponds to the value of measured permittivity below 1 MHz. At higher temperatures, a giant low-frequency permittivity was observed, obviously due to the enhanced conductivity and possible Maxwell-Wagner contribution. Above 200 K the observed magnetodielectric effect is caused essentially through the combination of magnetoresistance and the Maxwell-Wagner effect, as recently predicted by Catalan (Appl. Phys. Lett. 88, 102902 (2006)). Since the magnetodielectric effect does not occur due to a coupling of polarization and magnetization as expected in magnetoferroelectrics, we call it improper magnetodielectric effect. Below 175 K the magnetodielectric effect is by several orders of magnitude lower due to the decreased conductivity. Several phonons exhibit gradual softening with increasing temperature, which explains the previously observed high-frequency permittivity increase on heating. The observed non-complete phonon softening seems to be the consequence of the first-order nature of the ferroelectric transition.Comment: subm. to PRB. revised version according to referees' report

    Superconductivity in the YIr2Si2 and LaIr2Si2 Polymorphs

    Full text link
    We report on existence of superconductivity in YIr2Si2 and LaIr2Si2 compounds in relation to crystal structure. The two compounds crystallize in two structural polymorphs, both tetragonal. The high temperature polymorph (HTP) adopts the CaBe2Ge2-structure type (space group P4/nmm) while the low temperature polymorph (LTP) is of the ThCr2Si2 type (I4/mmm). By studying polycrystals prepared by arc melting we have observed that the rapidly cooled samples retain the HTP even at room temperature (RT) and below. Annealing such samples at 900C followed by slow cooling to RT provides the LTP. Both, the HTP and LTP were subsequently studied with respect to magnetism and superconductivity by electrical resistivity, magnetization, AC susceptibility and specific heat measurements. The HTP and LTP of both compounds respectively, behave as Pauli paramagnets. Superconductivity has been found exclusively in the HTP of both compounds below Tsc (= 2.52 K in YIr2Si2 and 1.24 K in LaIr2Si2). The relations of magnetism and superconductivity with the electronic and crystal structure are discussed with comparing experimental data with the results of first principles electronic structure calculations

    First-principles design and subsequent synthesis of a material to search for the permanent electric dipole moment of the electron

    Full text link
    We describe the first-principles design and subsequent synthesis of a new material with the specific functionalities required for a solid-state-based search for the permanent electric dipole moment of the electron. We show computationally that perovskite-structure europium barium titanate should exhibit the required large and pressure-dependent ferroelectric polarization, local magnetic moments, and absence of magnetic ordering even at liquid helium temperature. Subsequent synthesis and characterization of Eu0.5_{0.5}Ba0.5_{0.5}TiO3_3 ceramics confirm the predicted desirable properties.Comment: Nature Materials, in pres

    Magnetic Phase Transitions and Thermal Properties of Ho(Co1xSix)2Ho(Co_{1-x}Si_x)_2 Compounds

    No full text
    The specific heat of HoCo2HoCo_2 and Ho(Co0.95Si0.05)2Ho(Co_{0.95}Si_{0.05})_2 was measured as a function of temperature in several constant magnetic fields up to 8 T. A data analysis allowed us to determine the isothermal entropy change and the magnetocaloric effect in a wide temperature range. The considerable values of the magnetocaloric effect in the vicinity of the magnetic ordering transition are qualifying both compounds as suitable for magnetic refrigeration purposes. The magnetic phase transition temperature (TC)(T_C) increases from 77 K for HoCo2HoCo_2 to 103 K for Ho(Co0.95Si0.05)2Ho(Co_{0.95}Si_{0.05})_2 while the large magnetocaloric effect in the vicinity of TC is maintained, which demonstrates possible ways of tuning the operating temperatures of the magnetic refrigerant

    Magnetic Properties of a Novel CeCo0.715Si2.285CeCo_{0.715}Si_{2.285} Compound

    No full text
    We report on the basic physical properties of a novel CeCo0.715Si2.285CeCo_{0.715}Si_{2.285} compound, mainly its rich magnetic phase diagram. The compound crystallizes in the I-4m2 space group structure with extremely elongated unit cell (a = 4.12 Å, c = 32.84 Å). In a zero magnetic field it orders antiferromagnetically at TNT_{N} = 10.5 K with another order-to-order transition at 9.5 K. Under application of a magnetic field along the c-axis it manifests numerous magnetic transitions in small fields (B < 500 mT), resembling the so-called "devil's staircase" systems. Above 1 T the magnetization is almost constant up to 14 T (maximum magnetic field applied within our study) but considerably reduced (0.3 μBμ_B/Ce) with respect to the free Ce3+Ce^{3+} ion. After removing the applied field, however, the high field state remains unchanged to be removed in negative fields. The compound also exhibits strong hysteresis of magnetization with respect to varying temperature or magnetic field. For fields applied along the a-axis typical behavior for the hard axis in the material with uniaxial anisotropy is observed
    corecore