37 research outputs found

    Cell–Matrix De-Adhesion Dynamics Reflect Contractile Mechanics

    Get PDF
    Measurement of the mechanical properties of single cells is of increasing interest both from a fundamental cell biological perspective and in the context of disease diagnostics. In this study, we show that tracking cell shape dynamics during trypsin-induced de-adhesion can serve as a simple but extremely useful tool for probing the contractility of adherent cells. When treated with trypsin, both SW13−/− epithelial cells and U373 MG glioma cells exhibit a brief lag period followed by a concerted retraction to a rounded shape. The time–response of the normalized cell area can be fit to a sigmoidal curve with two characteristic time constants that rise and fall when cells are treated with blebbistatin and nocodazole, respectively. These differences can be attributed to actomyosin-based cytoskeletal remodeling, as evidenced by the prominent buildup of stress fibers in nocodazole-treated SW13−/− cells, which are also two-fold stiffer than untreated cells. Similar results observed in U373 MG cells highlights the direct association between cell stiffness and the de-adhesion response. Faster de-adhesion is obtained with higher trypsin concentration, with nocodazole treatment further expediting the process and blebbistatin treatment blunting the response. A simple finite element model confirms that faster contraction is achieved with increased stiffness

    Plasma Chemokine Levels Are Associated with the Presence and Extent of Angiographic Coronary Collaterals in Chronic Ischemic Heart Disease

    Get PDF
    In patients with chronic ischemic heart disease (IHD), the presence and extent of spontaneously visible coronary collaterals are powerful determinants of clinical outcome. There is marked heterogeneity in the recruitment of coronary collaterals amongst patients with similar degrees of coronary artery stenoses, but the biological basis of this heterogeneity is not known. Chemokines are potent mediators of vascular remodeling in diverse biological settings. Their role in coronary collateralization has not been investigated. We sought to determine whether plasma levels of angiogenic and angiostatic chemokines are associated with of the presence and extent of coronary collaterals in patients with chronic IHD.We measured plasma concentrations of angiogenic and angiostatic chemokine ligands in 156 consecutive subjects undergoing coronary angiography with at least one ≥90% coronary stenosis and determined the presence and extent of spontaneously visible coronary collaterals using the Rentrop scoring system. Eighty-eight subjects (56%) had evidence of coronary collaterals. In a multivariable regression model, the concentration of the angiogenic ligands CXCL5, CXCL8 and CXCL12, hyperlipidemia, and an occluded artery were associated with the presence of collaterals; conversely, the concentration of the angiostatic ligand CXCL11, interferon-γ, hypertension and diabetes were associated with the absence of collaterals (ROC area 0.91). When analyzed according to extent of collateralization, higher Rentrop scores were significantly associated with increased concentration of the angiogenic ligand CXCL1 (p<0.0001), and decreased concentrations of angiostatic ligands CXCL9 (p<0.0001), CXCL10 (p = 0.002), and CXCL11 (p = 0.0002), and interferon-γ (p = 0.0004).Plasma chemokine concentrations are associated with the presence and extent of spontaneously visible coronary artery collaterals and may be mechanistically involved in their recruitment
    corecore