717 research outputs found

    Local isotropy and refractive index fluctuations in the surface layer of the atmosphere

    Get PDF
    Theoretical and experimental evidence for the existence of local isotropy is briefly examined and conflicting results are found. Recent measurements of temperature spectra support earlier hot wire anemometer and optical scintillation measurements that show little evidence of local isotropy at 1 to 1.5 meters over an extensive uniform and level grass covered field

    Microscopic Theory of Protein Folding Rates.I: Fine Structure of the Free Energy Profile and Folding Routes from a Variational Approach

    Full text link
    A microscopic theory of the free energy barriers and folding routes for minimally frustrated proteins is presented, greatly expanding on the presentation of the variational approach outlined previously [J. J. Portman, S. Takada, P. G. Wolynes, Phys. Rev. Lett. {\bf 81}, 5237 (1998)]. We choose the λ\lambda-repressor protein as an illustrative example and focus on how the polymer chain statistics influence free energy profiles and partially ordered ensembles of structures. In particular, we investigate the role of chain stiffness on the free energy profile and folding routes. We evaluate the applicability of simpler approximations in which the conformations of the protein molecule along the folding route are restricted to have residues that are either entirely folded or unfolded in contiguous stretches. We find that the folding routes obtained from only one contiguous folded region corresponds to a chain with a much greater persistence length than appropriate for natural protein chains, while the folding route obtained from two contiguous folded regions is able to capture the relatively folded regions calculated within the variational approach. The free energy profiles obtained from the contiguous sequence approximations have larger barriers than the more microscopic variational theory which is understood as a consequence of partial ordering.Comment: 16 pages, 11 figure

    Non-Gaussian dynamics from a simulation of a short peptide: Loop closure rates and effective diffusion coefficients

    Full text link
    Intrachain contact formation rates, fundamental to the dynamics of biopolymer self-organization such as protein folding, can be monitored in the laboratory through fluorescence quenching measurements. The common approximations for the intrachain contact rate given by the theory of Szabo, Schulten, and Schulten (SSS) [J. Chem. Phys. {\bf 72}, 4350 (1980)] and Wilemski--Fixman (WF) [J.\ Chem. Phys. {\bf 60},878 (1973)] are shown to be complementary variational bounds: the SSS and WF approximations are lower and upper bounds, respectively, on the mean first contact times. As reported in the literature, the SSS approximation requires an effective diffusion coefficient 10 to 100 times smaller than expected to fit experimentally measured quenching rates. An all atom molecular dynamics simulation of an eleven residue peptide sequence in explicit water is analyzed to investigate the source of this surprising parameter value. In analytical work, the polymer is typically modeled by a Gaussian chain of effective monomers. Compared to Gaussian dynamics, the simulated end-to-end distance autocorrelation has a much slower relaxation. The long time behavior of the distance autocorrelation function can be approximated by a Gaussian model in which the monomer diffusion coefficient D_0 is reduced to D_0/6. This value of the diffusion coefficient brings the mean end-to-end contact time from analytical approximations and simulation into agreement in the sense that the SSS and WF approximations bracket the simulated mean first contact time.Comment: 12 pages, 7 eps figures, to appear in J. Chem. Phy

    Microscopic Theory of Protein Folding Rates.II: Local Reaction Coordinates and Chain Dynamics

    Full text link
    The motion involved in barrier crossing for protein folding are investigated in terms of the chain dynamics of the polymer backbone, completing the microscopic description of protein folding presented in the previous paper. Local reaction coordinates are identified as collective growth modes of the unstable fluctuations about the saddle-points in the free energy surface. The description of the chain dynamics incorporates internal friction (independent of the solvent viscosity) arising from the elementary isomerizations of the backbone dihedral angles. We find that the folding rate depends linearly on the solvent friction for high viscosity, but saturates at low viscosity because of internal friction. For λ\lambda-repressor, the calculated folding rate prefactor, along with the free energy barrier from the variational theory, gives a folding rate that agrees well with the experimentally determined rate under highly stabilizing conditions, but the theory predicts too large a folding rate at the transition midpoint. This discrepancy obtained using a fairly complete quantitative theory inspires a new set of questions about chain dynamics, specifically detailed motions in individual contact formation.Comment: 18 pages, 8 figure

    First Records of the Adventive Pseudoanthidium nanum (Mocsáry) (Hymenoptera: Megachilidae) in Illinois and Minnesota, with Notes on its Identification and Taxonomy

    Get PDF
    We report the first records of Pseudoanthidium nanum (Mocsáry) in Illinois and Minnesota in 2016 and 2018, respectively. This represents a relatively rapid expansion since P. nanum was first detected in New Jersey in 2008. In order to help monitor the spread of this bee, we provide information on how to identify P. nanum and provide images of the general habitus, diagnostic features, and male genitalia. Finally, we confirm the taxonomic identity of P. nanum in the United States and highlight potential impacts on native anthidiines
    corecore