1,448 research outputs found

    Heat conduction in 2D strongly-coupled dusty plasmas

    Full text link
    We perform non-equilibrium simulations to study heat conduction in two-dimensional strongly coupled dusty plasmas. Temperature gradients are established by heating one part of the otherwise equilibrium system to a higher temperature. Heat conductivity is measured directly from the stationary temperature profile and heat flux. Particular attention is paid to the influence of damping effect on the heat conduction. It is found that the heat conductivity increases with the decrease of the damping rate, while its magnitude agrees with previous experimental measurement.Comment: 4 pages, 2 figures, presented in SCCS2008 conferenc

    Dielectric resonator filters for UMTS systems

    Get PDF
    Dielectric Resonator filters can provide high selectivity and low insertion loss similar to cavity filters but with smaller size and weight. They have long been used in satellite communication and more recently became of significant interest in terrestrial applications. In this paper the design of two UMTS dielectric filters (transmit and receive) have been presented

    Self-Diffusion in 2D Dusty Plasma Liquids: Numerical Simulation Results

    Full text link
    We perform Brownian dynamics simulations for studying the self-diffusion in two-dimensional (2D) dusty plasma liquids, in terms of both mean-square displacement and velocity autocorrelation function (VAF). Super-diffusion of charged dust particles has been observed to be most significant at infinitely small damping rate γ\gamma for intermediate coupling strength, where the long-time asymptotic behavior of VAF is found to be the product of t1t^{-1} and exp(γt)\exp{(-\gamma t)}. The former represents the prediction of early theories in 2D simple liquids and the latter the VAF of a free Brownian particle. This leads to a smooth transition from super-diffusion to normal diffusion, and then to sub-diffusion with an increase of the damping rate. These results well explain the seemingly contradictory scattered in recent classical molecular dynamics simulations and experiments of dusty plasmas.Comment: 10 pages 5 figures, accepted by PR

    Wave spectra of 2D dusty plasma solids and liquids

    Full text link
    Brownian dynamics simulations were carried out to study wave spectra of two-dimensional dusty plasma liquids and solids for a wide range of wavelengths. The existence of a longitudinal dust thermal mode was confirmed in simulations, and a cutoff wavenumber in the transverse mode was measured. Dispersion relations, resulting from simulations, were compared with those from analytical theories, such as the random-phase approximation (RPA), quasi-localized charged approximation (QLCA), and harmonic approximation (HA). An overall good agreement between the QLCA and simulations was found for wide ranges of states and wavelengths after taking into account the direct thermal effect in the QLCA, while for the RPA and HA good agreement with simulations were found in the high and low temperature limits, respectively.Comment: 26 pages, 9 figure
    corecore