3,434 research outputs found

    Fast Radio Bursts

    Get PDF
    The discovery of radio pulsars over a half century ago was a seminal moment in astronomy. It demonstrated the existence of neutron stars, gave a powerful observational tool to study them, and has allowed us to probe strong gravity, dense matter, and the interstellar medium. More recently, pulsar surveys have led to the serendipitous discovery of fast radio bursts (FRBs). While FRBs appear similar to the individual pulses from pulsars, their large dispersive delays suggest that they originate from far outside the Milky Way and hence are many orders-of-magnitude more luminous. While most FRBs appear to be one-off, perhaps cataclysmic events, two sources are now known to repeat and thus clearly have a longer-lived central engine. Beyond understanding how they are created, there is also the prospect of using FRBs -- as with pulsars -- to probe the extremes of the Universe as well as the otherwise invisible intervening medium. Such studies will be aided by the high implied all-sky event rate: there is a detectable FRB roughly once every minute occurring somewhere on the sky. The fact that less than a hundred FRB sources have been discovered in the last decade is largely due to the small fields-of-view of current radio telescopes. A new generation of wide-field instruments is now coming online, however, and these will be capable of detecting multiple FRBs per day. We are thus on the brink of further breakthroughs in the short-duration radio transient phase space, which will be critical for differentiating between the many proposed theories for the origin of FRBs. In this review, we give an observational and theoretical introduction at a level that is accessible to astronomers entering the field.Comment: Invited review article for The Astronomy and Astrophysics Revie

    Fast Radio Bursts

    Get PDF
    The discovery of radio pulsars over a half century ago was a seminal moment in astronomy. It demonstrated the existence of neutron stars, gave a powerful observational tool to study them, and has allowed us to probe strong gravity, dense matter, and the interstellar medium. More recently, pulsar surveys have led to the serendipitous discovery of fast radio bursts (FRBs). While FRBs appear similar to the individual pulses from pulsars, their large dispersive delays suggest that they originate from far outside the Milky Way and hence are many orders-of-magnitude more luminous. While most FRBs appear to be one-off, perhaps cataclysmic events, two sources are now known to repeat and thus clearly have a longer-lived central engine. Beyond understanding how they are created, there is also the prospect of using FRBs -- as with pulsars -- to probe the extremes of the Universe as well as the otherwise invisible intervening medium. Such studies will be aided by the high implied all-sky event rate: there is a detectable FRB roughly once every minute occurring somewhere on the sky. The fact that less than a hundred FRB sources have been discovered in the last decade is largely due to the small fields-of-view of current radio telescopes. A new generation of wide-field instruments is now coming online, however, and these will be capable of detecting multiple FRBs per day. We are thus on the brink of further breakthroughs in the short-duration radio transient phase space, which will be critical for differentiating between the many proposed theories for the origin of FRBs. In this review, we give an observational and theoretical introduction at a level that is accessible to astronomers entering the field.Comment: Invited review article for The Astronomy and Astrophysics Revie

    Spectroscopy of nanoscopic semiconductor rings

    Get PDF
    Making use of self-assembly techniques, we demonstrate the realization of nanoscopic semiconductor quantum rings in which the electronic states are in the true quantum limit. We employ two complementary spectroscopic techniques to investigate both the ground states and the excitations of these rings. Applying a magnetic field perpendicular to the plane of the rings, we find that when approximately one flux quantum threads the interior of each ring, a change in the ground state from angular momentum ℓ=0\ell = 0 to ℓ=−1\ell = -1 takes place. This ground state transition is revealed both by a drastic modification of the excitation spectrum and by a change in the magnetic field dispersion of the single-electron charging energy

    Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers

    Full text link
    We report direct experimental evidence of room temperature spin filtering in magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via tunneling magnetoresistance (TMR) measurements. Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully epitaxial MTJs were grown in order to obtain a high quality system, capable of functioning at room temperature. Spin polarized transport measurements reveal significant TMR values of -18% at 2 K and -3% at 290 K. In addition, the TMR ratio follows a unique bias voltage dependence that has been theoretically predicted to be the signature of spin filtering in MTJs containing magnetic barriers. CoFe2O4 tunnel barriers therefore provide a model system to investigate spin filtering in a wide range of temperatures.Comment: 6 pages, 3 figure

    Growth and optical properties of self-assembled InGaAs Quantum Posts

    Full text link
    We demonstrate a method to grow height controlled, dislocation-free InGaAs quantum posts (QPs) on GaAs by molecular beam epitaxy (MBE) which is confirmed by structural investigations. The optical properties are compared to realistic 8-band k.p calculations of the electronic structure which fully account for strain and the structural properties of the QP. Using QPs embedded in n-i-p junctions we find wide range tunability of the interband spectrum and giant static dipole moments.Comment: Proccedings paper for MSS-13, 7 pages, 4 figure

    Coulomb interactions in single, charged self-assembled quantum dots: radiative lifetime and recombination energy

    Full text link
    We present results on the charge dependence of the radiative recombination lifetime, Tau, and the emission energy of excitons confined to single self-assembled InGaAs quantum dots. There are significant dot-to-dot fluctuations in the lifetimes for a particular emission energy. To reach general conclusions, we present the statistical behavior by analyzing data recorded on a large number of individual quantum dots. Exciton charge is controlled with extremely high fidelity through an n-type field effect structure, providing access to the neutral exciton (X0), the biexciton (2X0) and the positively (X1+) and negatively (X1-) charged excitons. We find significant differences in the recombination lifetime of each exciton such that, on average, Tau(X1-) / Tau(X0) = 1.25, Tau(X1+) / Tau(X0) = 1.58 and Tau(2X0) / Tau(X0) = 0.65. We attribute the change in lifetime to significant changes in the single particle hole wave function on charging the dot, an effect more pronounced on charging X0 with a single hole than with a single electron. We verify this interpretation by recasting the experimental data on exciton energies in terms of Coulomb energies. We show directly that the electron-hole Coulomb energy is charge dependent, reducing in value by 5-10% in the presence of an additional electron, and that the electron-electron and hole-hole Coulomb energies are almost equal.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    A Mixed-Method Analysis of Remittance Scripts Among Bolivian Immigrants in Spain

    Get PDF
    The use of mixed methods to deal with the complexity of remittance motivations is still infrequent. This paper uses statistical and qualitative data and provides evidence on the conceptual framework for understanding remittance behaviour proposed by the scholar Jørgen Carling. Carling''s ‘remittance scripts’ understand remittances as multifaceted transactions and enrich the assessment of the relationship between remittances and development at origin. We use quantitative and qualitative data, both extracted from an ethnosurvey conducted in Spain, to shed light on the situation of transnational Bolivian immigrants after the economic crisis of 2008. We argue that the transactions are best represented by the necessity to provide for the recipients'' basic needs

    Voltage-Controlled Optics of a Quantum Dot

    Full text link
    We show how the optical properties of a single semiconductor quantum dot can be controlled with a small dc voltage applied to a gate electrode. We find that the transmission spectrum of the neutral exciton exhibits two narrow lines with ∼2\sim 2 μ\mueV linewidth. The splitting into two linearly polarized components arises through an exchange interaction within the exciton. The exchange interaction can be turned off by choosing a gate voltage where the dot is occupied with an additional electron. Saturation spectroscopy demonstrates that the neutral exciton behaves as a two-level system. Our experiments show that the remaining problem for manipulating excitonic quantum states in this system is spectral fluctuation on a μ\mueV energy scale.Comment: 4 pages, 4 figures; content as publishe

    Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes

    Full text link
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. The one type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made (including title) to coincide with published versio
    • …
    corecore