2,517 research outputs found

    A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales

    Full text link
    In this work it is shown how the immersed boundary method of (Peskin2002) for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic tau^(-3/2) decay for long times. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method.Comment: 52 pages, 11 figures, published in journal of computational physic

    Explicit Actions for Electromagnetism with Two Gauge Fields with Only one Electric and one Magnetic Physical Fields

    Full text link
    We extend the work of Mello et al. based in Cabbibo and Ferrari concerning the description of electromagnetism with two gauge fields from a variational principle, i.e. an action. We provide a systematic independent derivation of the allowed actions which have only one magnetic and one electric physical fields and are invariant under the discrete symmetries PP and TT. We conclude that neither the Lagrangian, nor the Hamiltonian, are invariant under the electromagnetic duality rotations. This agrees with the weak-strong coupling mixing characteristic of the duality due to the Dirac quantization condition providing a natural way to differentiate dual theories related by the duality rotations (the energy is not invariant). Also the standard electromagnetic duality rotations considered in this work violate both PP and TT by inducing Hopf terms (theta terms) for each sector and a mixed Maxwell term. The canonical structure of the theory is briefly addressed and the 'magnetic' gauge sector is interpreted as a ghost sector.Comment: v2: 12 pages; References added, discussion concerning degrees of freedom corrected; v3: is now used the standard normalization of 1/4 in the actions; the possibility of theta being a pseudo-scalar implied a title changing; eq (23) added; signs corrected in equations (39,45-47); references adde

    Impact parameter dependence of heavy ion e+ e- pair production to all orders in Z alpha

    Get PDF
    The heavy ion probability for continuum e+ e- pair production has been calculated to all orders in Z alpha as a function of impact parameter. The formula resulting from an exact solution of the semiclassical Dirac equation in the ultrarelativistic limit is evaluated numerically. In a calculation of gamma = 100 colliding Au ions the probability of e+ e- pair production is reduced from the perturbation theory result throughout the impact parameter range.Comment: 20 pages, latex, revtex, 6 eps figures. Revised Phys. Rev. C version with minor additions, one figure added, and added reference

    Spontaneous symmetry breaking in the linear sigma model at finite chemical potential: One-loop corrections

    Get PDF
    We investigate spontaneous symmetry breaking within the linear sigma model with the SU(2)xU(1) internal symmetry at finite chemical potential, which was suggested as a model for kaon condensation in the CFL phase of dense quark matter. One-loop corrections to the scalar field effective potential as well as its propagator are calculated. Particular attention is paid to the type-II Goldstone boson that appears in the Bose--Einstein condensed phase. Furthermore, we show that the type-I Goldstone boson -- the superfluid phonon -- is allowed to decay due to the nonlinearity of its dispersion relation at high momentum, and determine its decay width.Comment: 13 pages, REVTeX4, 37 eps figures; v2: substantial error in Sec. IV corrected, references added, other minor corrections; version to appear in Phys. Rev.

    Effects of Velocity-Dependent Dark Matter Annihilation on the Energy Spectrum of the Extragalactic Gamma-ray Background

    Get PDF
    We calculate the effects of velocity-dependent dark matter annihilation cross sections on the intensity of the extragalactic gamma-ray background. Our formalism does not assume a locally thermal distribution of dark matter particles in phase space, and is valid for arbitrary velocity-dependent annihilation. As concrete examples, we calculate the effects of p-wave annihilation (with the vv-weighted cross section of σv=a+bv2\sigma v=a+bv^2) on the mean intensity of extragalactic gamma rays produced in cosmological dark matter halos. This velocity variation makes the shape of the energy spectrum harder, but this change in the shape is too small to see unless b/a\agt 10^6. While we find no such models in the parameter space of the Minimal Supersymmetric Standard Model (MSSM), we show that it is possible to find b/a\agt 10^6 in the extension MSSMU(1)BL\otimes U(1)_{B-L}. However, we find that the most dominant effect of the p-wave annihilation is the suppression of the amplitude of the gamma-ray background. A non-zero bb at the dark matter freeze-out epoch requires a smaller value of aa in order for the relic density constraint to be satisfied, suppressing the amplitude by a factor as low as 10610^{-6} for a thermal relic. Non-thermal relics will have weaker amplitude suppression. As another velocity-dependent effect, we calculate the spectrum for s-wave annihilation into fermions enhanced by the attractive Sommerfeld effect. Resonances associated with this effect result in significantly enhanced intensities, with a slightly softer energy spectrum.Comment: 18 pages, 10 figure

    Properties of a Discrete Quantum Field Theory

    Full text link
    A scalar quantum field theory defined on a discrete spatial coordinate is examined. The renormalization of the lattice propagator is discussed with an emphasis on the periodic nature of the associated momentum coordinate. The analytic properties of the scattering amplitudes indicate the development of a second branch point on which the branch cut from the optical theorem terminates.Comment: 7 pages, 1 figur

    Renormalization group approach to 2D Coulomb interacting Dirac fermions with random gauge potential

    Full text link
    We argue that massless Dirac particles in two spatial dimensions with 1/r1/r Coulomb repulsion and quenched random gauge field are described by a manifold of fixed points which can be accessed perturbatively in disorder and interaction strength, thereby confirming and extending the results of arXiv:0707.4171. At small interaction and small randomness, there is an infra-red stable fixed curve which merges with the strongly interacting infra-red unstable line at a critical endpoint, along which the dynamical critical exponent z=1z=1.Comment: 4 pages, 4 figure

    The effect of early dark matter halos on reionization

    Full text link
    The annihilation of dark matter particles releases energy, ionizing some of the gas in the Universe. We investigate the effect of dark matter halos on reionization. We show that the effect depends on the assumed density profile, the particle mass, and the assumed minimum halo mass. For NFW halos and typical WIMPs, we find the effect to be quite small. However, light dark matter candidates in the MeV range can contribute significantly to reionization and can make an important contribution to the measured optical depth. This effect may be used to constrain light dark matter models. We also study the effect of varying the halo density profile on reionization.Comment: Minor changes from v2. Accepted for publication in Phys. Rev.

    Trident pair production in strong laser pulses

    Full text link
    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse duration, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.Comment: 4 pages, 1 .eps figure. Version 2: reference added, published versio

    Spin-Dependent Antenna Splitting Functions

    Full text link
    We consider parton showers based on radiation from QCD dipoles or `antennae'. These showers are built from 2->3 parton splitting processes. The question then arises of what functions replace the Altarelli-Parisi splitting functions in this approach. We give a detailed answer to this question, applicable to antenna showers in which partons carry definite helicity, and to both initial- and final-state emissions.Comment: 31 pages, 12 figure
    corecore