78 research outputs found

    Activated I-BAR IRSp53 clustering controls the formation of VASP-actin–based membrane protrusions

    Get PDF
    Funding Information: Acknowledgments: The computations were supported by the University of Chicago Research Funding Information: The computations were supported by the University of Chicago Research Computing Center (RCC). We thank E. Coudrier and C. Simon for insightful discussions. We also thank F. Di Federico for handling plasmids, F. Tabarin-Cayrac for cell sorting, and A.-S. Mace for ImageJ programming assistance. F.-C.T., C.L.C., and P.B. are members of the CNRS consortium AQV. F.-C.T. and P.B. are members of the Labex Cell(n)Scale (ANR-11-LABX0038) and Paris Sciences et Lettres (ANR-10-IDEX-0001-02). We acknowledge the Cell and Tissue Imaging Core facility (PICT IBiSA), Institut Curie, member of the French National Research Infrastructure France-BioImaging (ANR10-INBS-04). This work was supported by Human Frontier Science Program (HFSP) grant RGP0005/2016 (to F.-C.T., J.M.H., G.A.V., P.L., and P.B.), Institut Curie and the Centre National de la Recherche Scientifique (CNRS) (to F.-C.T., J.M.H., and P.B.), Marie Curie actions H2020-MSCA-IF-2014 (to F.-C.T.), EMBO Long-Term fellowship ALTF 1527-2014 (to F.-C.T.), Pasteur Foundation Fellowship (to J.M.H.), Agence Nationale pour la Recherche ANR-20-CE13-0032 (to J.M.H. and P.B.) and ANR-20-CE11-0010-01 (to F.-C.T), Université Paris Sciences et Lettres-QLife Institute ANR-17-CONV-0005 Q-LIFE (to P.B.), FY 2015 Researcher Exchange Program between the Japan Society for the Promotion of Science and Academy of Finland (to Y.S.), the Takeda Science Foundation (to Y.S.), the Wesco Scientific Promotion Foundation (to Y.S.), Agence Nationale pour la Recherche ANR-18-CE13-0026-01 and ANR-21-CE13-0010-03 (to C.L.C.), Cancer Society Finland 4705949 (to P.L.), and U.S. National Institutes of Health (NIH) Institute of General Medical Sciences (NIGMS) grant R01-GM063796 (to G.A.V. and Z.J.) Publisher Copyright: Copyright © 2022 The Authors, some rights reserved.Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.Peer reviewe

    From upright to upside-down presentation: A spatio-temporal ERP study of the parametric effect of rotation on face and house processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is a general agreement that picture-plane inversion is more detrimental to face processing than to other seemingly complex visual objects, the origin of this effect is still largely debatable. Here, we address the question of whether face inversion reflects a quantitative or a qualitative change in processing mode by investigating the pattern of event-related potential (ERP) response changes with picture plane rotation of face and house pictures. Thorough analyses of topographical (Scalp Current Density maps, SCD) and dipole source modeling were also conducted.</p> <p>Results</p> <p>We find that whilst stimulus orientation affected in a similar fashion participants' response latencies to make face and house decisions, only the ERPs in the N170 latency range were modulated by picture plane rotation of faces. The pattern of N170 amplitude and latency enhancement to misrotated faces displayed a curvilinear shape with an almost linear increase for rotations from 0° to 90° and a dip at 112.5° up to 180° rotations. A similar discontinuity function was also described for SCD occipito-temporal and temporal current foci with no topographic distribution changes, suggesting that upright and misrotated faces activated similar brain sources. This was confirmed by dipole source analyses showing the involvement of bilateral sources in the fusiform and middle occipital gyri, the activity of which was differentially affected by face rotation.</p> <p>Conclusion</p> <p>Our N170 findings provide support for both the quantitative and qualitative accounts for face rotation effects. Although the qualitative explanation predicted the curvilinear shape of N170 modulations by face misrotations, topographical and source modeling findings suggest that the same brain regions, and thus the same mechanisms, are probably at work when processing upright and rotated faces. Taken collectively, our results indicate that the same processing mechanisms may be involved across the whole range of face orientations, but would operate in a non-linear fashion. Finally, the response tuning of the N170 to rotated faces extends previous reports and further demonstrates that face inversion affects perceptual analyses of faces, which is reflected within the time range of the N170 component.</p

    Global supply chains: the cost of sourcing?

    Get PDF
    Today’s business world relies on strategies that have gone beyond the geographical boundaries of one country to become International and in many cases “global”. This has only been made possible by a logistics industry that has not only learnt to manage with lower levels of inventory, smaller batch sizes and more frequent deliveries, shorter lead times and how to do it all at lower transport and storage costs, but to do so on a global scale. The success of global logistics and global sourcing has enabled concomitant success within multinational businesses, but has done so at a cost. Recently people have become more aware of those costs and have began to try to understand, classify and quantify them as a step towards controlling their impact in the future. The aim of this paper is to revisit some of the perceived benefits of globalisation and look at some of the recent attempts to begin to evaluate the possible downsides associated with our ever increasing dependence on global supply chains and the products/materials they make available to us. Whilst it generally accepts the previously posed suggestion that global supply chains can be seen as “sinners” (Griffiths and Savage, 2007), it looks forward to ways of moving them towards “sainthood”

    Analyseur de réponses neuronales a base de microprocesseur

    No full text
    • 

    corecore