5,134 research outputs found

    Renormalization of an effective Light-Cone QCD-inspired theory for the Pion and other Mesons

    Get PDF
    The renormalization of the effective QCD-Hamiltonian theory for the quark-antiquark channel is performed in terms of a renormalized or fixed-point Hamiltonian that leads to subtracted dynamical equations. The fixed point-Hamiltonian brings the renormalization conditions as well as the counterterms that render the theory finite. The approach is renormalization group invariant. The parameters of the renormalized effective QCD-Hamiltonian comes from the pion mass and radius, for a given constituent quark mass. The 1s and excited 2s states of uˉq\bar u q are calculated as a function of the mass of the quark qq being s, c or b, and compared to the experimental values.Comment: 39 pages, 10 figure

    On the Size of Hadrons

    Get PDF
    The form factor and the mean-square radius of the pion are calculated analytically from a parametrized form of a qqˉq\bar q wave function. The numerical wave function was obtained previously by solving numerically an eigenvalue equation for the pion in a particular model. The analytical formulas are of more general interest than just be valid for the pion and can be generalized to the case with unequal quark masses. Two different parametrizations are investigated. Because of the highly relativistic problem, noticable deviations from a non-relativistic formula are obtained.Comment: 14 pages, minor typos corrected, several points clarified, results unchange

    Transient effects on electron spin observation

    Get PDF
    In an earlier publication we addressed the problem of splitting an electron beam in the Stern-Gerlach experiment. In contrast to arguments put forward in the early days of quantum theory, we concluded that there are no issues of principle preventing the observation of electron spin during free flight. In that paper, however, we considered only a sudden switch off of the separating magnetic field. In this work we consider the possible effects of finite switching times at the beginning and the end of the interaction period. We consider a model where the coupling between the electron and the field is time dependent. As a result of the time dependence, the field also acquires an electric component, but this seems to cause no significant change of our conclusions. On the other hand, the smooth change of the interaction enforces the same longitudinal velocity on the electron both at the beginning and end of the interaction period because of conservation laws; this effect was missing in our earlier calculations. As the electrons are supposed to travel as a beam, this feature helps by restoring the beam quality after the interaction

    Exact solutions to Pauli-Villars-regulated field theories

    Get PDF
    We present a new class of quantum field theories which are exactly solvable. The theories are generated by introducing Pauli-Villars fermionic and bosonic fields with masses degenerate with the physical positive metric fields. An algorithm is given to compute the spectrum and corresponding eigensolutions. We also give the operator solution for a particular case and use it to illustrate some of the tenets of light-cone quantization. Since the solutions of the solvable theory contain ghost quanta, these theories are unphysical. However, we also discuss how perturbation theory in the difference between the masses of the physical and Pauli-Villars particles could be developed, thus generating physical theories. The existence of explicit solutions of the solvable theory also allows one to study the relationship between the equal-time and light-cone vacua and eigensolutions.Comment: 20 pages, REVTeX; minor corrections to normalization

    Leadership Criteria under Maximum Performance Conditions

    Get PDF
    Since the seminal work investigating the relationship between typical and maximum performance by Sackett, Zedeck, and Fogli in 1988, there has been a marked increase in research in this area. Although much research has furthered the relationship between typical and maximum performance, none have attempted to identify which leadership effectiveness criteria are considered most important to an individual’s maximum performance, or assessment of one’s potential. Thus, this empirical study seeks to identify the leadership effectiveness criteria under maximum performance conditions as it relates to entry and middle level managers. Using an exploratory factor analysis, the results suggest an interesting comparison of leadership criteria between entry and middle management engaged in maximum performance. For entry level managers, personality, effort, and attitude emerged as the most important factors for entry level managers suggesting that “leadership of self” is the pathway to being an effective leader. However, for middle level managers, trust, accommodation, and adaptability were considered essential leadership effectiveness criteria indicating “leadership of team” is an appropriate framework at this level

    Double-valuedness of the electron wave function and rotational zero-point motion of electrons in rings

    Full text link
    I propose that the phase of an electron's wave function changes by π\pi when the electron goes around a loop maintaining phase coherence. Equivalently, that the minimum orbital angular momentum of an electron in a ring is ℏ/2\hbar/2 rather than zero as generally assumed, hence that the electron in a ring has azimuthal zero point motion. This proposal provides a physical explanation for the origin of electronic `quantum pressure', it implies that a spin current exists in the ground state of aromatic ring molecules, and it suggests an explanation for the ubiquitousness of persistent currents observed in mesoscopic rings

    Interference in Bohmian Mechanics with Complex Action

    Full text link
    In recent years, intensive effort has gone into developing numerical tools for exact quantum mechanical calculations that are based on Bohmian mechanics. As part of this effort we have recently developed as alternative formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex [JCP {125}, 231103 (2006)]. In the alternative formulation there is a significant reduction in the magnitude of the quantum force as compared with the conventional Bohmian formulation, at the price of propagating complex trajectories. In this paper we show that Bohmian mechanics with complex action is able to overcome the main computational limitation of conventional Bohmian methods -- the propagation of wavefunctions once nodes set in. In the vicinity of nodes, the quantum force in conventional Bohmian formulations exhibits rapid oscillations that pose severe difficulties for existing numerical schemes. We show that within complex Bohmian mechanics, multiple complex initial conditions can lead to the same real final position, allowing for the description of nodes as a sum of the contribution from two or more crossing trajectories. The idea is illustrated on the reflection amplitude from a one-dimensional Eckart barrier. We believe that trajectory crossing, although in contradiction to the conventional Bohmian trajectory interpretation, provides an important new tool for dealing with the nodal problem in Bohmian methods

    Tube Model for Light-Front QCD

    Get PDF
    We propose the tube model as a first step in solving the bound state problem in light-front QCD. In this approach we neglect transverse variations of the fields, producing a model with 1+1 dimensional dynamics. We then solve the two, three, and four particle sectors of the model for the case of pure glue SU(3). We study convergence to the continuum limit and various properties of the spectrum.Comment: 29 page
    • …
    corecore