299 research outputs found

    Early-onset preeclampsia, plasma microRNAs, and endothelial cell function

    Get PDF
    Background: Preeclampsia is a hypertensive pregnancy disorder in which generalized systemic inflammation and maternal endothelial dysfunction are involved in the pathophysiology. MiRNAs are small noncoding RNAs responsible for post-transcriptional regulation of gene expression and involved in many physiological processes. They mainly downregulate translation of their target genes. Objective: We aimed to compare the plasma miRNA concentrations in preeclampsia, healthy pregnant women, and nonpregnant women. Furthermore, we aimed to evaluate the effect of 3 highly increased plasma miRNAs in preeclampsia on endothelial cell function in vitro. Study Design: We compared 3391 (precursor) miRNA concentrations in plasma samples from early-onset preeclamptic women, gestational age–matched healthy pregnant women, and nonpregnant women using miRNA 3.1. arrays (Affymetrix) and validated our findings by real-time quantitative polymerase chain reaction. Subsequently, endothelial cells (human umbilical vein endothelial cells) were transfected with microRNA mimics (we choose the 3 miRNAs with the greatest fold change and lowest false-discovery rate in preeclampsia vs healthy pregnancy). After transfection, functional assays were performed to evaluate whether overexpression of the microRNAs in endothelial cells affected endothelial cell function in vitro. Functional assays were the wound-healing assay (which measures cell migration and proliferation), the proliferation assay, and the tube-formation assay (which assesses formation of endothelial cell tubes during the angiogenic process). To determine whether the miRNAs are able to decrease gene expression of certain genes, RNA was isolated from transfected endothelial cells and gene expression (by measuring RNA expression) was evaluated by gene expression microarray (Genechip Human Gene 2.1 ST arrays; Life Technologies). For the microarray, we used pooled samples, but the differently expressed genes in the microarray were validated by real-time quantitative polymerase chain reaction in individual samples. Results: No significant differences (fold change 1.2 with a false-discovery rate <0.05) were found in miRNA plasma concentrations between healthy pregnant and nonpregnant women. The plasma concentrations of 26 (precursor) miRNAs were different between preeclampsia and healthy pregnancy. The 3 miRNAs that were increased with the greatest fold change and lowest false-discovery rate in preeclampsia vs healthy pregnancy were miR-574-5p, miR-1972, and miR-4793-3p. Transfection of endothelial cells with these miRNAs in showed that miR-574-5p decreased (P<.05) the wound-healing capacity (ie, decreased endothelial cell migration and/or proliferation) and tended (P<.1) to decrease proliferation, miR-1972 decreased tube formation (P<.05), and also tended (P<.1) to decrease proliferation, and miR-4793-3p tended (P<.1) to decrease both the wound-healing capacity and tube formation in vitro. Gene expression analysis of transfected endothelial cells revealed that miR-574-5p tended (P<.1) to decrease the expression of the proliferation marker MKI67. Conclusion: We conclude that in the early-onset preeclampsia group in our study different concentrations of plasma miRNAs are present as compared with healthy pregnancy. Our results suggest that miR-574-5p and miR-1972 decrease the proliferation (probably via decreasing MKI67) and/or migration as well as the tube-formation capacity of endothelial cells. Therefore, these miRNAs may be antiangiogenic factors affecting endothelial cells in preeclampsia

    Healthy and preeclamptic pregnancies show differences in Guanylate-Binding Protein-1 plasma levels

    Get PDF
    The large interferon-inducible anti-angiogenic pro-inflammatory GTPase Guanylate Binding Protein-1 (GBP-1) is produced and secreted by activated endothelial cells and is highly induced by inflammatory cytokines and inhibited by angiogenic growth factors. During pregnancy a generalized mild inflammatory response is observed. During preeclampsia this generalized inflammatory response is even further activated and activation of the endothelium occurs. We hypothesized that GBP-1 is increased in healthy pregnancy and will be even further increased during preeclampsia. In the first experiment, plasma and placentas were collected from healthy and preeclamptic pregnancies. Plasma was also collected from non-pregnant women. For the second experiment longitudinal blood samples from women with a healthy or preeclamptic pregnancy were collected from the end of the first trimester until birth and one sample postpartum. The plasma GBP-1 levels were measured by ELISA and GBP-1 mRNA and protein levels in the placenta were tested by qPCR and immunohistochemistry. During pregnancy higher plasma concentrations of GBP-1 compared with non-pregnant women were observed. Surprisingly, during preeclampsia, plasma GBP-1 levels were lower than in control pregnancies and similar to the level of non-pregnant controls. Placental GBP-1 mRNA levels were not different between healthy and preeclamptic pregnancies and GBP-1 protein was virtually undetectable in the trophoblast by immunohistochemistry in placental tissue. Evaluation of longitudinal samples showed that plasma GBP-1 concentrations increased towards the end of pregnancy in healthy pregnancies, but not in preeclampsia. In line with our hypothesis, we found higher GBP-1 plasma levels during healthy pregnancy. However, plasma GBP-1 did not further increase during preeclampsia, but was stable. Further studies are needed to evaluate why GBP-1 does not increase during preeclampsia

    IMproving PArticipation of patients in Clinical Trials - rationale and design of IMPACT

    Get PDF
    BACKGROUND: One of the most commonly reported problems of randomised trials is that recruitment is usually slower than expected. Trials will cost more and take longer, thus delaying the use of the results in clinical practice, and incomplete samples imply decreased statistical power and usefulness of its results. We aim to identify barriers and facilitators for successful patient recruitment at the level of the patient, the doctor and the hospital organization as well as the organization and design of trials over a broad range of studies. METHODS/DESIGN: We will perform two cohort studies and a case-control study in the Netherlands. The first cohort study will report on a series of multicenter trials performed in a nationwide network of clinical trials in obstetrics and gynaecology. A questionnaire will be sent to all clinicians recruiting for these trials to identify determinants - aggregated at centre level - for the recruitment rate. In a case control-study nested in this cohort we will interview patients who refused or consented participation to identify factors associated with patients' consent or refusal. In a second cohort study, we will study trials that were prospectively registered in the Netherlands Trial Register. Using a questionnaire survey we will assess whether issues on hospital organization, trial organization, planning and trial design were associated with successful recruitment, i.e. 80% of the predefined number of patients recruited within the planned time. DISCUSSION: This study will provide insight in barriers and facilitators for successful patient recruitment in trials. The results will be used to provide recommendations and a checklist for individual trialists to identify potential pitfalls for recruitment and judge the feasibility prior to the start of the study. Identified barriers and motivators coupled to evidence-based interventions can improve recruitment of patients in clinical trials

    Atosiban versus fenoterol as a uterine relaxant for external cephalic version: randomised controlled trial

    Get PDF
    Objective To compare the effectiveness of the oxytocin receptor antagonist atosiban with the beta mimetic fenoterol as uterine relaxants in women undergoing external cephalic version (ECV) for breech presentation. Design Multicentre, open label, randomised controlled trial. Setting Eight hospitals in the Netherlands, August 2009 to May 2014. Participants 830 women with a singleton fetus in breech presentation and a gestational age of more than 34 weeks were randomly allocated in a 1:1 ratio to either 6.75 mg atosiban (n=416) or 40 μg fenoterol (n=414) intravenously for uterine relaxation before ECV. Main outcome measures The primary outcome measures were a fetus in cephalic position 30 minutes after the procedure and cephalic presentation at delivery. Secondary outcome measures were mode of delivery, incidence of fetal and maternal complications, and drug related adverse events. All analyses were done on an intention-to-treat basis. Results Cephalic position 30 minutes after ECV occurred significantly less in the atosiban group than in the fenoterol group (34% v 40%, relative risk 0.73, 95% confidence interval 0.55 to 0.93). Presentation at birth was cephalic in 35% (n=139) of the atosiban group and 40% (n=166) of the fenoterol group (0.86, 0.72 to 1.03), and caesarean delivery was performed in 60% (n=240) of women in the atosiban group and 55% (n=218) in the fenoterol group (1.09, 0.96 to 1.20). No significant differences were found in neonatal outcomes or drug related adverse events. Conclusions In women undergoing ECV for breech presentation, uterine relaxation with fenoterol increases the rate of cephalic presentation 30 minutes after the procedure. No statistically significant difference was found for cephalic presentation at delivery
    • …
    corecore