5,271 research outputs found
Estimation of soil water deficit in an irrigated cotton field with infrared thermography
Plant growth and soil water deficit can vary spatially and temporally in crop fields due to variation in soil properties and/or irrigation and crop management factors. We conducted field experiments with cotton (Gossypium hirsutum L.) over two seasons during 2007-2009 to test if infrared thermography can distinguish systematic variation in deficit irrigation applied to various parts of the field over time. Soil water content was measured with a neutron probe and thermal images of crop plants were taken with a thermal infrared camera. Leaf water potential and stomatal conductance were also measured on selected occasions. All measurements were made at fixed locations within three replicate plots of an irrigation experiment consisting of four soil-water deficit treatments. Canopy temperature related as well with soil water within the root zone of cotton as the stomatal conductance index derived from canopy temperature, but it neglected the effect of local and seasonal variation in environmental conditions. Similarities in the pattern of spatial variation in canopy temperature and soil water over the experimental field indicates that thermography can be used with stomatal conductance index to assess soil water deficit in cotton fields for scheduling of irrigation and to apply water in areas within the field where it is most needed to reduce water deficit stress to the crop. Further confidence with application of infrared thermography can be gained by testing our measurement approach and analysis with irrigation scheduling of other crops
Size-dependent spinodal and miscibility gaps for intercalation in nano-particles
Using a recently-proposed mathematical model for intercalation dynamics in
phase-separating materials [Singh, Ceder, Bazant, Electrochimica Acta 53, 7599
(2008)], we show that the spinodal and miscibility gaps generally shrink as the
host particle size decreases to the nano-scale. Our work is motivated by recent
experiments on the high-rate Li-ion battery material LiFePO4; this serves as
the basis for our examples, but our analysis and conclusions apply to any
intercalation material. We describe two general mechanisms for the suppression
of phase separation in nano-particles: (i) a classical bulk effect, predicted
by the Cahn-Hilliard equation, in which the diffuse phase boundary becomes
confined by the particle geometry; and (ii) a novel surface effect, predicted
by chemical-potential-dependent reaction kinetics, in which
insertion/extraction reactions stabilize composition gradients near surfaces in
equilibrium with the local environment. Composition-dependent surface energy
and (especially) elastic strain can contribute to these effects but are not
required to predict decreased spinodal and miscibility gaps at the nano-scale
Square kilometre array station configuration using two-stage beamforming
The lowest frequency band (70–450 MHz) of the Square Kilometre Array (SKA) will consist of sparse aperture arrays grouped into geographically localised patches or stations. Signals from thousands of antennas in each station will be beamformed to produce station beams which form the inputs for the central correlator. Two-stage beamforming within stations can reduce SKA-low signal processing load and costs, but has not been previously explored for the irregular station layouts now favoured in radio astronomy arrays. This paper illustrates the effects of two-stage beamforming on sidelobes and effective area, for two representative station layouts (regular and irregular gridded tiles on an irregular station). The performance is compared with a single-stage, irregular station. The inner sidelobe levels do not change significantly between layouts, but the more distant sidelobes are affected by the tile layouts; regular tile creates diffuse, but regular, grating lobes. With very sparse arrays, the station effective area is similar between layouts. At lower frequencies, the regular tile significantly reduces effective area, hence sensitivity. The effective area is highest for a two-stage irregular station, but it requires a larger station extent than the other two layouts. Although there are cost benefits for stations with two-stage beamforming, we conclude that more accurate station modelling and SKA-low configuration specifications are required before design finalisation
Inner wellbeing: concept and validation of a new approach to subjective perceptions of wellbeing-India
© The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This paper describes the conceptual development of a multi-domain, psychosocial model of 'Inner Wellbeing' (IWB) and assesses the construct validity of the scale designed to measure it. IWB expresses what people think and feel they are able to be and do. Drawing together scholarship in wellbeing and international development it is grounded in field research in marginalised, rural communities in the global South. Results from research in India at two points in time (2011 and 2013) are reported. At Time 1 (n = 287), we were unable to confirm an eight-factor, correlated model as distinct yet interrelated domains. However, at Time 2 (n = 335), we were able to confirm a revised, seven-factor correlated model with economic confidence, agency and participation, social connections, close relationships, physical and mental health, competence and self-worth, and values and meaning (five items per domain) as distinct yet interrelated domains. In particular, at Time 2, a seven-factor, correlated model provided a significantly better fit to the data than did a one-factor model.This work is supported by the Economic and Social Research Council/Department for
International Development Joint Scheme for Research on International Development (Poverty Alleviation)
grant number RES-167-25-0507 ES/H033769/1. Special thanks are due to Chaupal and Gangaram Paikra,
Pritam Das, Usha Kujur, Kanti Minjh, Susanna Siddiqui, and Dinesh Tirkey
Supersymmetry discovery potential of the LHC at 10 and 14 TeV without and with missing
We examine the supersymmetry (SUSY) reach of the CERN LHC operating at
and 14 TeV within the framework of the minimal supergravity
model. We improve upon previous reach projections by incorporating updated
background calculations including a variety of Standard Model (SM)
processes. We show that SUSY discovery is possible even before the detectors
are understood well enough to utilize either or electrons in
the signal. We evaluate the early SUSY reach of the LHC at TeV by
examining multi-muon plus jets and also dijet events with {\it no}
missing cuts and show that the greatest reach in terms of
occurs in the dijet channel. The reach in multi-muons is slightly smaller in
, but extends to higher values of . We find that an observable
multi-muon signal will first appear in the opposite-sign dimuon channel, but as
the integrated luminosity increases the relatively background-free but
rate-limited same-sign dimuon, and ultimately the trimuon channel yield the
highest reach. We show characteristic distributions in these channels that
serve to distinguish the signal from the SM background, and also help to
corroborate its SUSY origin. We then evaluate the LHC reach in various
no-lepton and multi-lepton plus jets channels {\it including} missing
cuts for and 14 TeV, and plot the reach for integrated
luminosities ranging up to 3000 fb at the SLHC. For TeV,
the LHC reach extends to and 2.9 TeV for
and integrated luminosities of 10, 100, 1000 and
3000 fb, respectively. For TeV, the LHC reach for the same
integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for
ab^-1 integrated luminosities, with minor corrections of references and text.
2 figures added. To appear in JHE
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
Using a novel electrochemical phase-field model, we question the common
belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases
during battery discharge. For small currents, spinodal decomposition or
nucleation leads to moving phase boundaries. Above a critical current density
(in the Tafel regime), the spinodal disappears, and particles fill
homogeneously, which may explain the superior rate capability and long cycle
life of nano-LiFePO4 cathodes.Comment: 27 pages, 8 figure
Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries
The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
- …