1,355 research outputs found

    The Dipole Observed in the COBE DMR Four-Year Data

    Get PDF
    The largest anisotropy in the cosmic microwave background (CMB) is the 3\approx 3 mK dipole assumed to be due to our velocity with respect to the CMB. Using the four year data set from all six channels of the COBE Differential Microwave Radiometers (DMR), we obtain a best-fit dipole amplitude 3.358±0.001±0.0233.358 \pm 0.001 \pm 0.023 mK in the direction (l,b)=(264deg.31±0deg.04±0deg.16,+48deg.05±0deg.02±0deg.09)(l,b)=(264\deg.31 \pm 0\deg.04 \pm 0\deg.16, +48\deg.05 \pm 0\deg.02 \pm 0\deg.09), where the first uncertainties are statistical and the second include calibration and combined systematic uncertainties. This measurement is consistent with previous DMR and FIRAS resultsComment: New and improved version; to be published in ApJ next mont

    Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    Get PDF
    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009,. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were detected across the nation, including damage from ice storms, tornadoes, caterpillars, bark beetles, and wildfires. This effort enabled improved NRT forest disturbance monitoring capabilities for this nation-wide forest threat EWS

    Contribution of Extragalactic Infrared Sources to CMB Foreground Anisotropy

    Full text link
    We estimate the level of confusion to Cosmic Microwave Background anisotropy measurements caused by extragalactic infrared sources. CMB anisotropy observations at high resolution and high frequencies are especially sensitive to this foreground. We use data from the COBE satellite to generate a Galactic emission spectrum covering mm and sub-mm wavelengths. Using this spectrum as a template, we predict the microwave emission of the 5319 brightest infrared galaxies seen by IRAS. We simulate skymaps over the relevant range of frequencies (30-900 GHz) and instrument resolutions (10'-10 degrees Full Width Half Max). Analysis of the temperature anisotropy of these skymaps shows that a reasonable observational window is available for CMB anisotropy measurements.Comment: 14 pages (LaTex source), 3 PostScript figures. Final version, to appear in ApJLetters May 1. Expanded discussion of systematic error

    Monitoring 2009 Forest Disturbance Across the Conterminous United States, Based on Near-Real Time and Historical MODIS 250 Meter NDVI Products

    Get PDF
    This case study shows the promise of computing current season forest disturbance detection products at regional to CONUS scales. Use of the eMODIS expedited product enabled a NRT CONUS forest disturbance detection product, a requirement for an eventual, operational forest threat EWS. The 2009 classification product from this study can be used to quantify the areal extent of forest disturbance across CONUS, although a quantitative accuracy assessment still needs to be completed. However, the results would not include disturbances that occurred after July 27, such as the Station Fire. While not shown here, the project also produced maximum NDVI products for the June 10-July 27 period of each year of the 2000-2009 time frame. These products could be applied to compute forest change products on an annual basis. GIS could then be used to assess disturbance persistence. Such follow-on work could lead to attribution of year in which a disturbance occurred. These products (e.g., Figures 6 and 7) may also be useful for assessing forest change associated with climate change, such as carbon losses from bark beetle-induced forest mortality in the Western United States. Other MODIS phenological products are being assessed for aiding forest monitoring needs of the EWS, including cumulative NDVI products (Figure 10)

    Search For Unresolved Sources In The COBE-DMR Two-Year Sky Maps

    Full text link
    We have searched the temperature maps from the COBE Differential Microwave Radiometers (DMR) first two years of data for evidence of unresolved sources. The high-latitude sky (|b| > 30\deg) contains no sources brighter than 192 uK thermodynamic temperature (322 Jy at 53 GHz). The cumulative count of sources brighter than threshold T, N(> T), is consistent with a superposition of instrument noise plus a scale-invariant spectrum of cosmic temperature fluctuations normalized to Qrms-PS = 17 uK. We examine the temperature maps toward nearby clusters and find no evidence for any Sunyaev-Zel'dovich effect, \Delta y < 7.3 x 10^{-6} (95% CL) averaged over the DMR beam. We examine the temperature maps near the brightest expected radio sources and detect no evidence of significant emission. The lack of bright unresolved sources in the DMR maps, taken with anisotropy measurements on smaller angular scales, places a weak constraint on the integral number density of any unresolved Planck-spectrum sources brighter than flux density S, n(> S) < 2 x 10^4 (S/1 Jy)^{-2} sr^{-1}.Comment: 16 pages including 2 figures, uuencoded PostScript, COBE preprint 94-0

    Triclinic polymorph of bis­(triphenyl­sil­yl) oxide toluene disolvate

    Get PDF
    A new polymorph of the title compound, C36H30OSi2·2C7H8, is reported, which is triclinic (P-1) instead of possessing the previously reported rhombohedral symmetry [Hönle et al. (1990). Acta Cryst. C46, 1982–1984]. Each of the –SiPh3 units are related by the inversion center. The Si—O—Si moiety is linear with the O atom sitting on an inversion center, and the O—Si—(toluene ring centroid) angle is 3.69 (15)°. Each toluene mol­ecule is 5.622 (2) Å from the Si atom and has its closest contacts with the phenyl rings outside of the van der Waals radii

    Estimate of the Cosmological Bispectrum from the MAXIMA-1 Cosmic Microwave Background Map

    Full text link
    We use the measurement of the cosmic microwave background taken during the MAXIMA-1 flight to estimate the bispectrum of cosmological perturbations. We propose an estimator for the bispectrum that is appropriate in the flat sky approximation, apply it to the MAXIMA-1 data and evaluate errors using bootstrap methods. We compare the estimated value with what would be expected if the sky signal were Gaussian and find that it is indeed consistent, with a χ2\chi^2 per degree of freedom of approximately unity. This measurement places constraints on models of inflation.Comment: 5 pages, 2 figures. New version to match paper accepted for publication in Phys. Rev. Lett. Non-diagonal terms included leading to new limits on f_N

    Geospatial Method for Computing Supplemental Multi-Decadal U.S. Coastal Land-Use and Land-Cover Classification Products, Using Landsat Data and C-CAP Products

    Get PDF
    This paper discusses the development and implementation of a geospatial data processing method and multi-decadal Landsat time series for computing general coastal U.S. land-use and land-cover (LULC) classifications and change products consisting of seven classes (water, barren, upland herbaceous, non-woody wetland, woody upland, woody wetland, and urban). Use of this approach extends the observational period of the NOAA-generated Coastal Change and Analysis Program (C-CAP) products by almost two decades, assuming the availability of one cloud free Landsat scene from any season for each targeted year. The Mobile Bay region in Alabama was used as a study area to develop, demonstrate, and validate the method that was applied to derive LULC products for nine dates at approximate five year intervals across a 34-year time span, using single dates of data for each classification in which forests were either leaf-on, leaf-off, or mixed senescent conditions. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and C-CAP value-added products. Each classification's overall accuracy was assessed by comparing stratified random locations to available reference data, including higher spatial resolution satellite and aerial imagery, field survey data, and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall Kappa statistics ranging from 0.78 to 0.89. The accuracies are comparable to those from similar, generalized LULC products derived from C-CAP data. The Landsat MSS-based LULC product accuracies are similar to those from Landsat TM or ETM+ data. Accurate classifications were computed for all nine dates, yielding effective results regardless of season. This classification method yielded products that were used to compute LULC change products via additive GIS overlay techniques
    corecore