224 research outputs found

    Line of continuous phase transitions in a three dimensional U(1) model with 1/r^2 current-current interactions

    Get PDF
    We study a lattice model of interacting loops in three dimensions with a 1/r21/r^2 interaction. Using Monte Carlo, we find that the phase diagram contains a line of second-order phase transitions between a phase where the loops are gapped and a phase where they proliferate. The correlation length exponent and critical conductivity vary continuously along this line. Our model is exactly self-dual at a special point on the critical line, which allows us to calculate the critical conductivity exactly at this point.Comment: 6 pages, 6 figure

    Comprehensive embryo testing. Experts opinions regarding future directions: an expert panel study on comprehensive embryo testing

    Get PDF
    What do scientists in the field of preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS) consider to be the future direction of comprehensive embryo testing? Although there are many biological and technical limitations, as well as uncertainties regarding the meaning of genetic variation, comprehensive embryo testing will impact the IVF/PGD practice and a timely ethical reflection is needed. Comprehensive testing using microarrays is currently being introduced in the context of PGD and PGS, and it is to be expected that whole-genome sequencing will also follow. Current ethical and empirical sociological research on embryo testing focuses on PGD as it is practiced now. However, empirical research and systematic reflection regarding the impact of comprehensive techniques for embryo testing is missing. In order to understand the potential of this technology and to be able to adequately foresee its implications, we held an expert panel with seven pioneers in PGD. We conducted an expert panel in October 2011 with seven PGD pioneers from Belgium, The Netherlands, Germany and the UK. Participants expected the use of comprehensive techniques in the context of PGD. However, the introduction of these techniques in embryo testing requires timely ethical reflection as it involves a shift from choosing an embryo without a particular genetic disease (i.e. PGD) or most likely to result in a successful pregnancy (i.e. PGS) to choosing the best embryo based on a much wider set of criteria. Such ethical reflection should take account of current technical and biological limitations and also of current uncertainties with regard to the meaning of genetic variance. However, ethicists should also not be afraid to look into the future. There was a general agreement that embryo testing will be increasingly preceded by comprehensive preconception screening, thus enabling smart combinations of genetic testing. The group was composed of seven participants from four Western Europe countries. As willingness to participate in this study may be connected with expectations regarding the pace and direction of future developments, selection bias cannot be excluded. The introduction of comprehensive screening techniques in embryo testing calls for further ethical reflection that is grounded in empirical work. Specifically, there is a need for studies querying the opinions of infertile couples undergoing IVF/PGS regarding the desirability of embryo screening beyond aneuploidy. This research was supported by the CSG, Centre for Society and Life Sciences (project number: 70.1.074). The authors declare no conflict of interest. N/A

    Exact Results for the Bipartite Entanglement Entropy of the AKLT spin-1 chain

    Full text link
    We study the entanglement between two domains of a spin-1 AKLT chain subject to open boundary conditions. In this case the ground-state manifold is four-fold degenerate. We summarize known results and present additional exact analytical results for the von Neumann entanglement entropy, as a function of both the size of the domains and the total system size for {\it all} four degenerate ground-states. In the large l,Ll,L limit the entanglement entropy approaches ln(2)\ln(2) and 2ln(2)2\ln(2) for the STz=±1S^z_T=\pm 1 and STz=0S^z_T=0 states, respectively. In all cases, it is found that this constant is approached exponentially fast defining a length scale ξ=1/ln(3)\xi=1/\ln(3) equal to the known bulk correlation length.Comment: 11 pages, 3 figure

    A Superglass Phase of Interacting Bosons

    Get PDF
    We introduce a Bose-Hubbard Hamiltonian with random disordered interactions as a model to study the interplay of superfluidity and glassiness in a system of three-dimensional hard-core bosons at half-filling. Solving the model using large-scale quantum Monte Carlo simulations, we show that these disordered interactions promote a stable superglass phase, where superflow and glassy density localization coexist in equilibrium without exhibiting phase separation. The robustness of the superglass phase is underlined by its existence in a replica mean-field calculation on the infinite-dimensional Hamiltonian.Comment: 4 pages 3 figures: to appear in Phys. Rev. Lett

    Structure of S30 with S32(p,t)S30 and the thermonuclear P29(p,γ)S30 reaction rate

    Get PDF
    The structure of proton unbound S30 states is important for determining the P29(p,γ)S30 reaction rate, which influences explosive hydrogen burning in classical novae and type I x-ray bursts. The reaction rate in this temperature regime had been previously predicted to be dominated by two low-lying, unobserved, Jπ= 3+ and 2+ resonances above the proton threshold in S30. To search for these levels, the structure of S30 was studied using the S32(p,t)S30 transfer reaction with a magnetic spectrograph. We have confirmed a previous detection of a state near 4700 keV, which had tentatively been assigned Jπ=3+. We have also discovered a new state at 4814(3) keV, which is a strong candidate for the other important resonance (Jπ=2+). The new P29(p,γ)S30 reaction rate is up to 4-20 times larger than previously determined rates over the relevant temperature range. The uncertainty in the reaction rate due to uncertainties in the resonance energies has been significantly reduced. © 2010 The American Physical Society

    Intraduodenal Administration of Intact Pea Protein Effectively Reduces Food Intake in Both Lean and Obese Male Subjects

    Get PDF
    BACKGROUND: Human duodenal mucosa secretes increased levels of satiety signals upon exposure to intact protein. However, after oral protein ingestion, gastric digestion leaves little intact proteins to enter the duodenum. This study investigated whether bypassing the stomach, through intraduodenal administration, affects hormone release and food-intake to a larger extent than orally administered protein in both lean and obese subjects. METHODS: Ten lean (BMI:23.0±0.7 kg/m²) and ten obese (BMI:33.4±1.4 kg/m²) healthy male subjects were included. All subjects randomly received either pea protein solutions (250 mg/kg bodyweight in 0.4 ml/kg bodyweight of water) or placebo (0.4 ml/kg bodyweight of water), either orally or intraduodenally via a naso-duodenal tube. Appetite-profile, plasma GLP-1, CCK, and PYY concentrations were determined over a 2 h period. After 2 h, subjects received an ad-libitum meal and food-intake was recorded. RESULTS: CCK levels were increased at 10(p<0.02) and 20(p<0.01) minutes after intraduodenal protein administration (IPA), in obese subjects, compared to lean subjects, but also compared to oral protein administration (OPA)(p<0.04). GLP-1 levels increased after IPA in obese subjects after 90(p<0.02) to 120(p<0.01) minutes, compared to OPA. Food-intake was reduced after IPA both in lean and obese subjects (-168.9±40 kcal (p<0.01) and -298.2±44 kcal (p<0.01), respectively), compared to placebo. Also, in obese subjects, food-intake was decreased after IPA (-132.6±42 kcal; p<0.01), compared to OPA. CONCLUSIONS: Prevention of gastric proteolysis through bypassing the stomach effectively reduces food intake, and seems to affect obese subjects to a greater extent than lean subjects. Enteric coating of intact protein supplements may provide an effective dietary strategy in the prevention/treatment of obesity

    Fertility preservation in female classic galactosemia patients

    Get PDF
    Almost every female classic galactosemia patient develops primary ovarian insufficiency (POI) as a diet-independent complication of the disease. This is a major concern for patients and their parents, and physicians are often asked about possible options to preserve fertility. Unfortunately, there are no recommendations on fertility preservation in this group. The unique pathophysiology of classic galactosemia with a severely reduced follicle pool at an early age requires an adjusted approach. In this article recommendations for physicians based on current knowledge concerning galactosemia and fertility preservation are made. Fertility preservation is only likely to be successful in very young prepubertal patients. In this group, cryopreservation of ovarian tissue is currently the only available technique. However, this technique is not ready for clinical application, it is considered experimental and reduces the ovarian reserve. Fertility preservation at an early age also raises ethical questions that should be taken into account. In addition, spontaneous conception despite POI is well described in classic galactosemia. The uncertainty surrounding fertility preservation and the significant chance of spontaneous pregnancy warrant counseling towards conservative application of these techniques. We propose that fertility preservation should only be offered with appropriate institutional research ethics approval to classic galactosemia girls at a young prepubertal age

    Impurity Entanglement in the JJ2δJ-J_2-\delta Quantum Spin Chain

    Full text link
    The contribution to the entanglement of an impurity attached to one end of a JJ2deltaJ-J_2-delta quantum spin chain (S=1/2) is studied. Two different measures of the impurity contribution to the entanglement have been proposed: the impurity-entanglement-entropy S_{imp} and the negativity N. The first, S_{imp}, is based on a subtractive procedure where the entanglement-entropy in the absence of the impurity is subtracted from results with the impurity present. The other, N, is the negativity of a part of the system separated from the impurity and the impurity itself. In this paper we compare the two measures and discuss similarities and differences between them. In the JJ2δJ-J_2-\delta model it is possible to perform very precise variational calculations close to the Majumdar-Ghosh-point (J_2 = J / 2 and \delta = 0) where the system is gapped with a two-fold degenerate dimerized ground-state. We describe in detail how such calculations are done and how they can be used to calculate N as well as S_{imp} for any impurity-coupling J_K. We then study the complete cross-over in the impurity entanglement as J_K is varied between 0 and 1 close to the Majumdar-Ghosh-point. In particular we study the impurity entanglement when a staggered nearest-neighbour-interaction proportional to δ\delta is introduced. In this case, the two-fold degeneracy of the ground-state is lifted leading to a very rapid reduction in the impurity entanglement as δ\delta is increased.Comment: 24 pages, 25 figures, typos corrected, one figure added and minor revisions of text performe
    corecore