57,941 research outputs found

    Field-induced magnetic reorientation and effective anisotropy of a ferromagnetic monolayer within spin wave theory

    Get PDF
    The reorientation of the magnetization of a ferromagnetic monolayer is calculated with the help of many-body Green's function theory. This allows, in contrast to other spin wave theories, a satisfactory calculation of magnetic properties over the entire temperature range of interest since interactions between spin waves are taken into account. A Heisenberg Hamiltonian plus a second-order uniaxial single-ion anisotropy and an external magnetic field is treated by the Tyablikov (Random Phase Approximation: RPA) decoupling of the exchange interaction term and the Anderson-Callen decoupling of the anisotropy term. The orientation of the magnetization is determined by the spin components \la S^\alpha\ra (α=x,y,z\alpha=x,y,z), which are calculated with the help of the spectral theorem. The knowledge of the orientation angle Θ0\Theta_0 allows a non-perturbative determination of the temperature dependence of the effective second-order anisotropy coefficient. Results for the Green's function theory are compared with those obtained with mean-field theory (MFT). We find significant differences between these approaches.Comment: to appear in Europ.J.Phys.B, 13 pages, 9 figure

    Coupled ferro-antiferromagnetic Heisenberg bilayers investigated by many-body Green's function theory

    Full text link
    A theory of coupled ferro- and antiferromagnetic Heisenberg layers is developed within the framework of many-body Green's function theory (GFT) that allows non-collinear magnetic arrangements by introducing sublattice structures. As an example, the coupled ferro- antiferromagnetic (FM-AFM) bilayer is investigated. We compare the results with those of bilayers with purely ferromagnetic or antiferromagnetic couplings. In each case we also show the corresponding results of mean field theory (MFT), in which magnon excitations are completely neglected. There are significant differences between GFT and MFT. A remarkable finding is that for the coupled FM-AFM bilayer the critical temperature decreases with increasing interlayer coupling strength for a simple cubic lattice, whereas the opposite is true for an fcc lattice as well as for MFT for both lattice types.Comment: 17 pages, 6 figures, accepted for publication in J. Phys. Condens. Matter, missing fig.5 adde

    Elementary transitions and magnetic correlations in two-dimensional disordered nanoparticle ensembles

    Full text link
    The magnetic relaxation processes in disordered two-dimensional ensembles of dipole-coupled magnetic nanoparticles are theoretically investigated by performing numerical simulations. The energy landscape of the system is explored by determining saddle points, adjacent local minima, energy barriers, and the associated minimum energy paths (MEPs) as functions of the structural disorder and particle density. The changes in the magnetic order of the nanostructure along the MEPs connecting adjacent minima are analyzed from a local perspective. In particular, we determine the extension of the correlated region where the directions of the particle magnetic moments vary significantly. It is shown that with increasing degree of disorder the magnetic correlation range decreases, i.e., the elementary relaxation processes become more localized. The distribution of the energy barriers, and their relation to the changes in the magnetic configurations are quantified. Finally, some implications for the long-time magnetic relaxation dynamics of nanostructures are discussed.Comment: 19 pages, 6 figure

    Magnetic Raman scattering of the ordered tetrahedral spin-1/2 clusters in Cu_2Te_2O_5(Br_(1-x)Cl_x)_2 compounds

    Full text link
    Raman light-scattering experiments in the antiferromagnetic phase of the Cu_2Te_2O_5(Br_(1-x)Cl_x)_2 compounds are analyzed in terms of a dimerized spin model for the tetrahedral Cu-clusters. It is shown that the longitudinal magnetic excitation in the pure Br system hybridizes with a localized singlet excitation due to the presence of a Dzyaloshinskii-Moriya anisotropy term. The drastic change of the magnetic scattering intensities observed when a proportion of Br is replaced by Cl ions, is proposed to be caused by a change of the magnetic order parameter. Instead of being parallel/antiparallel with each other, the spins in the two pairs of spin-1/2 order perpendicular to each other, when the composition x is larger than about 0.25.Comment: EPL, in pres

    Strongly interacting Fermi gases with density imbalance

    Full text link
    We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.Comment: Added one reference. Published in PR

    Many-body Green's function theory of ferromagnetic Heisenberg systems with single-ion anisotropies in more than one direction

    Full text link
    The behaviour of ferromagnetic systems with single-ion anisotropies in more than one direction is investigated with many-body Green's function theory generalizing earlier work with uniaxial anisotropies only. It turns out to be of advantage to construct Green's functions in terms of the spin operators S^x, S^y and S^z, instead of the commonly used S^+,S^- and S^z operators. The exchange energy terms are decoupled by RPA and the single-ion anisotropy terms by a generalization of the Anderson-Callen decoupling. We stress that in the derivation of the formalism none of the three spatial axes is special, so that one is always able to select a reference direction along which a magnetization component is not zero. Analytical expressions are obtained for all three components of the magnetization and the expectation values , and for any spin quantum number S. The formalism considers both in-plane and out-of-plane anisotropies. Numerical calculations illustrate the behaviour of the magnetization for 3-dimensional and 2-dimensional systems for various parameters. In the 2-dimensional case, the magnetic dipole-dipole coupling is included, and a comparison is made between in-plane and out-of-plane anisotropies.Comment: 16 pages, 8 figures, missing figures adde

    Genetic Improvement of Livestock for Organic Farming Systems

    Get PDF
    Organic farming which experienced a constant rise over the last two decades is a system based on sustainability and on a concept tending towards functional integrity. Legislation as well as the wish to produce separately from conventional farming raise the question whether organic farming should be conducted completely apart from conventional farming or not. This paper discusses the aspects that affect animal breeding under these circumstances, e.g., maintaining genetic diversity by using local breeds and possible G×E interactions which might occur when breeds adapted to conventional farming systems are used in organic farming. Ways of modelling G×E are presented, moreover examples of G×E in dairy cattle, swine, and poultry are given. Trends in selection index theory–designing multi-trait breeding goals including functional traits on one hand, and developing methods for using customised selection indices on the other hand–support breeding work for organic farming systems. It is concluded that before the technical issues can be addressed, all parties involved, farmers, consumers as well as legislators, have to agree on the socio-cultural conditions under which organic farming should be conducted
    • …
    corecore