6,552 research outputs found
Magnetic properties of Yb2Mo2O7 and Gd2Mo2O7 from rare earth Mossbauer measurements
Using 170-Yb and 155-Gd Mossbauer measurements down to 0.03K, we have
examined the semiconducting pyrochlore Yb2Mo2O7 where the Mo intra-sublattice
interaction is anti-ferromagnetic and the metallic pyrochlore Gd2Mo2O7 where
this interaction is ferromagnetic. Additional information was obtained from
susceptibility, magnetisation and 172-Yb perturbed angular correlation
measurements. The microscopic measurements evidence lattice disorder which is
important in Yb2Mo2O7 and modest in Gd2Mo2O7. Magnetic irreversibilities occur
at 17K in Yb2Mo2O7 and at 75K in Gd2Mo2O7 and below these temperatures the rare
earths carry magnetic moments which are induced through couplings with the Mo
sublattice. In Gd2Mo2O7, we observe the steady state Gd hyperfine populations
at 0.027K are out of thermal equilibrium, indicating that Gd and Mo spin
fluctuations persist at very low temperatures. Frustration is thus operative in
this essentially isotropic pyrochlore where the dominant Mo intra-sublattice
interaction is ferromagnetic.Comment: 9 pages, 9 figure
Epistemic Logic with Partial Dependency Operator
In this paper, we introduce dependency modality
into epistemic logic so as to reason about
dependency relationship in Kripke models. The resulted dependence epistemic
logic possesses decent expressivity and beautiful properties. Several
interesting examples are provided, which highlight this logic's practical
usage. The logic's bisimulation is then discussed, and we give a sound and
strongly complete axiomatization for a sub-language of the logic
Semantic memory is impaired in both dementia with Lewy Bodies (DLB) and dementia of Alzheimer's type (DAT): a comparative neuropsychological study and literature review
OBJECTIVE---To test the hypothesis that semantic impairment is present in both patients with dementia with Lewy bodies (DLB) and those with dementia of Alzheimer's type (DAT).
METHODS---A comprehensive battery of neuropsychological tasks designed to assess semantic memory, visuoperceptual function, verbal fluency, and recognition memory was given to groups of patients with DLB (n=10), DAT (n=10) matched pairwise for age and mini mental state examination (MMSE), and age matched normal controls (n=15).
RESULTS---Both DLB and DAT groups exhibited impaired performance across the range of tasks designed to assess semantic memory. Whereas patients with DAT showed equivalent comprehension of written words and picture stimuli, patients with DLB demonstrated more severe semantic deficits for pictures than words. As in previous studies, patients with DLB but not those with DAT were found to have impaired visuoperceptual functioning. Letter and category fluency were equally reduced for the patients with DLB whereas performance on letter fluency was significantly better in the DAT group. Recognition memory for faces and words was impaired in both groups.
CONCLUSIONS---Semantic impairment is not limited to patients with DAT. Patients with DLB exhibit particular problems when required to access meaning from pictures that is most likely to arise from a combination of semantic and visuoperceptual impairments
Generalized Effective Reducibility
We introduce two notions of effective reducibility for set-theoretical
statements, based on computability with Ordinal Turing Machines (OTMs), one of
which resembles Turing reducibility while the other is modelled after Weihrauch
reducibility. We give sample applications by showing that certain (algebraic)
constructions are not effective in the OTM-sense and considerung the effective
equivalence of various versions of the axiom of choice
ESR study of the single-ion anisotropy in the pyrochlore antiferromagnet Gd2Sn2O7
Single-ion anisotropy is of importance for the magnetic ordering of the
frustrated pyrochlore antiferromagnets Gd2Ti2O7 and Gd2Sn2O7. The anisotropy
parameters for the Gd2Sn2O7 were measured using the electron spin resonance
(ESR) technique. The anisotropy was found to be of the easy plane type, with
the main constant D=140mK. This value is 35% smaller than the value of the
corresponding anisotropy constant in the related compound Gd2Ti2O7.Comment: 8 pages, 3 figure
Principles of Control for Decoherence-Free Subsystems
Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum
information against noise with known symmetry properties. Although Hamiltonians
theoretically exist that can implement a universal set of logic gates on DFS
encoded qubits without ever leaving the protected subsystem, the natural
Hamiltonians that are available in specific implementations do not necessarily
have this property. Here we describe some of the principles that can be used in
such cases to operate on encoded qubits without losing the protection offered
by the DFS. In particular, we show how dynamical decoupling can be used to
control decoherence during the unavoidable excursions outside of the DFS. By
means of cumulant expansions, we show how the fidelity of quantum gates
implemented by this method on a simple two-physical-qubit DFS depends on the
correlation time of the noise responsible for decoherence. We further show by
means of numerical simulations how our previously introduced "strongly
modulating pulses" for NMR quantum information processing can permit
high-fidelity operations on multiple DFS encoded qubits in practice, provided
that the rate at which the system can be modulated is fast compared to the
correlation time of the noise. The principles thereby illustrated are expected
to be broadly applicable to many implementations of quantum information
processors based on DFS encoded qubits.Comment: 12 pages, 7 figure
Subsystem Pseudo-pure States
A critical step in experimental quantum information processing (QIP) is to
implement control of quantum systems protected against decoherence via
informational encodings, such as quantum error correcting codes, noiseless
subsystems and decoherence free subspaces. These encodings lead to the promise
of fault tolerant QIP, but they come at the expense of resource overheads.
Part of the challenge in studying control over multiple logical qubits, is
that QIP test-beds have not had sufficient resources to analyze encodings
beyond the simplest ones. The most relevant resources are the number of
available qubits and the cost to initialize and control them. Here we
demonstrate an encoding of logical information that permits the control over
multiple logical qubits without full initialization, an issue that is
particularly challenging in liquid state NMR. The method of subsystem
pseudo-pure state will allow the study of decoherence control schemes on up to
6 logical qubits using liquid state NMR implementations.Comment: 9 pages, 1 Figur
- …