211 research outputs found

    Comprehension of spacecraft telemetry using hierarchical specifications of behavior ⋆

    Get PDF
    Abstract. A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Runtime verification of parametric properties using SMEDL

    Get PDF
    Parametric properties are typical properties to be checked in runtime verification (RV). As a common technique for parametric monitoring, trace slicing divides an execution trace into a set of sub traces which are checked against non-parametric base properties. An efficient trace slicing algorithm is implemented in MOP. Another RV technique, QEA further allows for nested use of universal and existential quantification over parameters. In this paper, we present a methodology for parametric monitoring using the RV framework SMEDL. Trace slicing algorithm in MOP can be expressed by execution of a set of SMEDL monitors. Moreover, the semantics of nested quantifiers is encoded by a hierarchy of monitors for aggregating verdicts of sub traces. Through case studies, we demonstrate that SMEDL provides a natural way to monitor parametric properties with more potentials for flexible deployment and optimizations

    Unworking Milton: Steps to a Georgics of the Mind

    Full text link
    Traditionally read as a poem about laboring subjects who gain power through abstract and abstracting forms of bodily discipline, John Milton’s Paradise Lost (1667, 1674) more compellingly foregrounds the erotics of the Garden as a space where humans and nonhumans intra-act materially and sexually. Following Christopher Hill, who long ago pointed to not one but two revolutions in the history of seventeenth-century English radicalism—the first, ‘the one which succeeded[,] . . . the protestant ethic’; and the second, ‘the revolution which never happened,’ which sought ‘communal property, a far wider democracy[,] and rejected the protestant ethic’—I show how Milton’s Paradise Lost gives substance to ‘the revolution which never happened’ by imagining a commons, indeed a communism, in which human beings are not at the center of things, but rather constitute one part of the greater ecology of mind within Milton’s poem. In the space created by this ecological reimagining, plants assume a new agency. I call this reimagining ‘ecology to come.

    Classical Morphology of Plants as an Elementary Instance of Classical Invariant Theory

    Get PDF
    It has long been known that structural chemistry shows an intriguing correspondence with Classical Invariant Theory (CIT). Under this view, an algebraic binary form of the degree n corresponds to a chemical atom with valence n and each physical molecule or ion has an invariant-theoretic counterpart. This theory was developed using the Aronhold symbolical approach and the symbolical processes of convolution/transvection in CIT was characterized as a potential “accurate morphological method”. However, CIT has not been applied to the formal morphology of living organisms. Based on the morphological interpretation of binary form, as well as the process of convolution/transvection, the First and Second Fundamental Theorems of CIT and the Nullforms of CIT, we show how CIT can be applied to the structure of plants, especially when conceptualized as a series of plant metamers (phytomers). We also show that the weight of the covariant/invariant that describes a morphological structure is a criterion of simplicity and, therefore, we argue that this allows us to formulate a parsimonious method of formal morphology. We demonstrate that the “theory of axilar bud” is the simplest treatment of the grass seedling/embryo. Our interpretations also represent Troll's bauplan of the angiosperms, the principle of variable proportions, morphological misfits, the basic types of stem segmentation, and Goethe's principle of metamorphosis in terms of CIT. Binary forms of different degrees might describe any repeated module of plant organisms. As bacteria, invertebrates, and higher vertebrates are all generally shared a metameric morphology, wider implications of the proposed symmetry between CIT and formal morphology of plants are apparent
    corecore