5,784 research outputs found

    Shuttle flight pressure instrumentation: Experience and lessons for the future

    Get PDF
    Flight data obtained from the Space Transportation System orbiter entries are processed and analyzed to assess the accuracy and performance of the Development Flight Instrumentation (DFI) pressure measurement system. Selected pressure measurements are compared with available wind tunnel and computational data and are further used to perform air data analyses using the Shuttle Entry Air Data System (SEADS) computation technique. The results are compared to air data from other sources. These comparisons isolate and demonstrate the effects of the various limitations of the DFI pressure measurement system. The effects of these limitations on orbiter performance analyses are addressed, and instrumentation modifications are recommended to improve the accuracy of similar fight data systems in the future

    Origin of Rashba-splitting in the quantized subbands at Bi2Se3 surface

    Full text link
    We study the band structure of the Bi2Se3\text{Bi}_2\text{Se}_3 topological insulator (111) surface using angle-resolved photoemission spectroscopy. We examine the situation where two sets of quantized subbands exhibiting different Rashba spin-splitting are created via bending of the conduction (CB) and the valence (VB) bands at the surface. While the CB subbands are strongly Rashba spin-split, the VB subbands do not exhibit clear spin-splitting. We find that CB and VB experience similar band bending magnitudes, which means, a spin-splitting discrepancy due to different surface potential gradients can be excluded. On the other hand, by comparing the experimental band structure to first principles LMTO band structure calculations, we find that the strongly spin-orbit coupled Bi 6pp orbitals dominate the orbital character of CB, whereas their admixture to VB is rather small. The spin-splitting discrepancy is, therefore, traced back to the difference in spin-orbit coupling between CB and VB in the respective subbands' regions

    Structural phase transitions of vortex matter in an optical lattice

    Full text link
    We consider the vortex structure of a rapidly rotating trapped atomic Bose-Einstein condensate in the presence of a co-rotating periodic optical lattice potential. We observe a rich variety of structural phases which reflect the interplay of the vortex-vortex and vortex-lattice interactions. The lattice structure is very sensitive to the ratio of vortices to pinning sites and we observe structural phase transitions and domain formation as this ratio is varied.Comment: 4 pages, 3 figure

    Changing Morphology of Metallic Monolayers Via Temperature-Controlled Heteroepitaxial Growth

    Get PDF
    Variable temperature scanning tunneling microscopy at substrate temperatures between 25 and 550 K reveals a transition from diffusion limited aggregation to thermodynamic equilibrium in the two-dimensional (2D) monolayer growth of Ag on the Pt(111) surface. Via deposition temperature control the ''nanostructure'' of the grown 2D-Ag-films can be tuned in a very defined way: from randomly distributed adatoms and small clusters, through highly dendritic islands, dense large islands with irregular or smooth boundaries to an equilibrium 2D condensate-gas mixture

    Multipole Ordering and Fluctuations in f-Electron Systems

    Full text link
    We investigate effects of multipole moments in f-electron systems both from phenomenological and microscopic viewpoints. First, we discuss significant effects of octupole moment on the magnetic susceptibility in a paramagnetic phase. It is found that even within mean-field approximation, the magnetic susceptibility deviates from the Curie-Weiss law due to interactions between dipole and octupole moments. Next, we proceed to a microscopic theory for multipole ordering on the basis of a j-j coupling scheme. After brief explanation of a method to derive multipole interactions from the ff-electron model, we discuss several multipole ordered phases depending on lattice structure. Finally, we show our new development of the microscopic approach to the evaluation of multipole response functions. We apply fluctuation exchange approximation to the f-electron model, and evaluate multipole response functions.Comment: 7 pages, 4 figures, Proceedings of ASR-WYP-200

    Governance of Offshore IT Outsourcing at Shell Global Functions IT-BAM Development and Application of a Governance Framework to Improve Outsourcing Relationships

    Get PDF
    The lack of effective IT governance is widely recognized as a key inhibitor to successful global IT outsourcing relationships. In this study we present the development and application of a governance framework to improve outsourcing relationships. The approach used to developing an IT governance framework includes a meta model and a customization process to fit the framework to the target organization. The IT governance framework consists of four different elements (1) organisational structures, (2) joint processes between in- and outsourcer, (3) responsibilities that link roles to processes and (4) a diverse set of control indicators to measure the success of the relationship. The IT governance framework is put in practice in Shell GFIT BAM, a part of Shell that concluded to have a lack of management control over at least one of their outsourcing relationships. In a workshop the governance framework was used to perform a gap analysis between the current and desired governance. Several gaps were identified in the way roles and responsibilities are assigned and joint processes are set-up. Moreover, this workshop also showed the usefulness and usability of the IT governance framework in structuring, providing input and managing stakeholders in the discussions around IT governance

    Building One-Dimensional and 2-Dimensional Nanostructures by Diffusion-Controlled Aggregation at Surfaces

    Get PDF
    THE formation of nanometre-scale surface structures by atomic manipulation with the scanning tunneling microscope has opened up opportunities for creating new metastable states of matter atom by atom1. The technique allows the fabrication of arbitrary structures, but its application may be limited by considerations of speed, as only one nanostructure can be built at a time. Here we describe the simultaneous formation of many densely packed nanostructures of various morphologies using diffusion-controlled aggregation on surfaces. By exploiting the dependence of the mobility of adsorbed atoms on substrate crystal face and temperature, we are able to grow linear, two-dimensional or tenuous fractal aggregates of nanometre dimensions. The high number density (10(11)-10(14) cm-2) of these structures means that their physical and chemical properties can be easily measured with conventional surface spectroscopies
    • …
    corecore