3,005 research outputs found
Recommended from our members
Evolutionary Signatures In The Formation Of Low-Mass Protostars. II. Toward Reconciling Models And Observations
A long-standing problem in low-mass star formation is the "luminosity problem," whereby protostars are underluminous compared to the accretion luminosity expected both from theoretical collapse calculations and arguments based on the minimum accretion rate necessary to form a star within the embedded phase duration. Motivated by this luminosity problem, we present a set of evolutionary models describing the collapse of low-mass, dense cores into protostars. We use as our starting point the evolutionary model following the inside-out collapse of a singular isothermal sphere as presented by Young & Evans. We calculate the radiative transfer of the collapsing core throughout the full duration of the collapse in two dimensions. From the resulting spectral energy distributions, we calculate standard observational signatures (L(bol), T(bol), L(bol)/L(smm)) to directly compare to observations. We incorporate several modifications and additions to the original Young & Evans model in an effort to better match observations with model predictions; we include (1) the opacity from scattering in the radiative transfer, (2) a circumstellar disk directly in the two-dimensional radiative transfer, (3) a two-dimensional envelope structure, taking into account the effects of rotation, (4) mass-loss and the opening of outflow cavities, and (5) a simple treatment of episodic mass accretion. We find that scattering, two-dimensional geometry, mass-loss, and outflow cavities all affect the model predictions, as expected, but none resolve the luminosity problem. On the other hand, we find that a cycle of episodic mass accretion similar to that predicted by recent theoretical work can resolve this problem and bring the model predictions into better agreement with observations. Standard assumptions about the interplay between mass accretion and mass loss in our model give star formation efficiencies consistent with recent observations that compare the core mass function and stellar initial mass function. Finally, the combination of outflow cavities and episodic mass accretion reduces the connection between observational class and physical stage to the point where neither of the two commonly used observational signatures (T(bol) and L(bol)/L(smm)) can be considered reliable indicators of physical stage.NASA 1224608, 1288664, 1288658, RSA 1377304, NNX 07-AJ72GNSF AST0607793UT Austin University Continuing FellowshipAstronom
Ionospheric refraction effects on orbit determination using the orbit determination error analysis system
The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination
Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand
Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time
The WKB Approximation without Divergences
In this paper, the WKB approximation to the scattering problem is developed
without the divergences which usually appear at the classical turning points. A
detailed procedure of complexification is shown to generate results identical
to the usual WKB prescription but without the cumbersome connection formulas.Comment: 13 pages, TeX file, to appear in Int. J. Theor. Phy
An investigation of the existence of a surface water layer on aircraft radomes during simulated flight in heavy precipitation
An experiment to investigate the electromagnetic attenuation effects of an impacting water spray on an aircraft weather radome was conducted in Langley's 4 X 7 m. wind tunnel equipped with a water spray system. Results indicate no significant liquid water film formed at the stagnation point of the radome under the test conditions. However, a water sheath was observed standing away from the radome surface, which could possibly have significant attenuation properties of its own. Due to the lack of fidelity in modeling both the natural environment with the tunnel apparatus and the water sheath, it is recommended that further studies be undertaken to better define the water distribution in the vicinity of the radome and measure its effect on weather radar performance
Centrifugal terms in the WKB approximation and semiclassical quantization of hydrogen
A systematic semiclassical expansion of the hydrogen problem about the
classical Kepler problem is shown to yield remarkably accurate results. Ad hoc
changes of the centrifugal term, such as the standard Langer modification where
the factor l(l+1) is replaced by (l+1/2)^2, are avoided. The semiclassical
energy levels are shown to be exact to first order in with all higher
order contributions vanishing. The wave functions and dipole matrix elements
are also discussed.Comment: 5 pages, to appear in Phys. Rev.
Integrals Over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant
Let be the triangle with vertices (1,0), (0,1), (1,1). We study certain
integrals over , one of which was computed by Euler. We give expressions for
them both as a linear combination of multiple zeta values, and as a polynomial
in single zeta values. We obtain asymptotic expansions of the integrals, and of
sums of certain multiple zeta values with constant weight. We also give related
expressions for Euler's constant. In the final section, we evaluate more
general integrals -- one is a Chen (Drinfeld-Kontsevich) iterated integral --
over some polytopes that are higher-dimensional analogs of . This leads to a
relation between certain multiple polylogarithm values and multiple zeta
values.Comment: 19 pages, to appear in Mat Zametki. Ver 2.: Added Remark 3 on a Chen
(Drinfeld-Kontsevich) iterated integral; simplified Proposition 2; gave
reference for (19); corrected [16]; fixed typ
The Bolocam Galactic Plane Survey IX: Data Release 2 and Outer Galaxy Extension
We present a re-reduction and expansion of the Bolocam Galactic Plane Survey,
first presented by Aguirre et al. (2011) and Rosolowsky et al. (2010). The BGPS
is a 1.1 mm survey of dust emission in the Northern galactic plane, covering
longitudes -10 < \ell < 90 and latitudes |b| < 0.5 with a typical 1-\sigma RMS
sensitivity of 30-100 mJy in a 33" beam. Version 2 of the survey includes an
additional 20 square degrees of coverage in the 3rd and 4th quadrants and 2
square degrees in the 1st quadrant. The new data release has improved angular
recovery, with complete recovery out to 80" and partial recovery to 300", and
reduced negative bowls around bright sources resulting from the atmospheric
subtraction process. We resolve the factor of 1.5 flux calibration offset
between the v1.0 data release and other data sets and determine that there is
no offset between v2.0 and other data sets. The v2.0 pointing accuracy is
tested against other surveys and demonstrated to be accurate and an improvement
over v1.0. We present simulations and tests of the pipeline and its properties,
including measurements of the pipeline's angular transfer function. The Bolocat
cataloging tool was used to extract a new catalog, which includes 8594 sources,
with 591 in the expanded regions. We have demonstrated that the Bolocat 40" and
80" apertures are accurate even in the presence of strong extended background
emission. The number of sources is lower than in v1.0, but the amount of flux
and area included in identified sources is larger.Comment: 36 pages, 16 figures, accepted to ApJS. Data available from
http://irsa.ipac.caltech.edu/data/BOLOCAM_GPS
- …