3,006 research outputs found

    Regulating Highly Automated Robot Ecologies: Insights from Three User Studies

    Full text link
    Highly automated robot ecologies (HARE), or societies of independent autonomous robots or agents, are rapidly becoming an important part of much of the world's critical infrastructure. As with human societies, regulation, wherein a governing body designs rules and processes for the society, plays an important role in ensuring that HARE meet societal objectives. However, to date, a careful study of interactions between a regulator and HARE is lacking. In this paper, we report on three user studies which give insights into how to design systems that allow people, acting as the regulatory authority, to effectively interact with HARE. As in the study of political systems in which governments regulate human societies, our studies analyze how interactions between HARE and regulators are impacted by regulatory power and individual (robot or agent) autonomy. Our results show that regulator power, decision support, and adaptive autonomy can each diminish the social welfare of HARE, and hint at how these seemingly desirable mechanisms can be designed so that they become part of successful HARE.Comment: 10 pages, 7 figures, to appear in the 5th International Conference on Human Agent Interaction (HAI-2017), Bielefeld, German

    A differential method for bounding the ground state energy

    Get PDF
    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics

    Imperfect bifurcations via topological methods in superlinear indefinite problems

    Full text link
    In [5] the structure of the bifurcation diagrams of a class of superlinear indefinite problems with a symmetric weight was ascertained, showing that they consist of a primary branch and secondary loops bifurcating from it. In [4] it has been proved that, when the weight is asymmetric, the bifurcation diagrams are no longer connected since parts of the primary branch and loops of the symmetric case form an arbitrarily high number of isolas. In this work we give a deeper insight on this phenomenon, studying how the secondary bifurcations break as the weight is perturbed from the symmetric situation. Our proofs rely on the approach of [5,4], i.e. on the construction of certain Poincar\'e maps and the study of how they vary as some of the parameters of the problems change, constructing in this way the bifurcation diagrams.Comment: 13 pages, 7 figure

    Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes

    Get PDF
    Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration η\eta between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of η1013\eta\simeq 10^{-13} or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan 16, 2006. 16 2-column pages, 9 figure

    Dynamics of a lattice Universe

    Get PDF
    We find a solution to Einstein field equations for a regular toroidal lattice of size L with equal masses M at the centre of each cell; this solution is exact at order M/L. Such a solution is convenient to study the dynamics of an assembly of galaxy-like objects. We find that the solution is expanding (or contracting) in exactly the same way as the solution of a Friedman-Lema\^itre-Robertson-Walker Universe with dust having the same average density as our model. This points towards the absence of backreaction in a Universe filled with an infinite number of objects, and this validates the fluid approximation, as far as dynamics is concerned, and at the level of approximation considered in this work.Comment: 14 pages. No figure. Accepted version for Classical and Quantum Gravit

    Topology and Homoclinic Trajectories of Discrete Dynamical Systems

    Get PDF
    We show that nontrivial homoclinic trajectories of a family of discrete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle bifurcate from a stationary solution if the asymptotic stable bundles Es(+{\infty}) and Es(-{\infty}) of the linearization at the stationary branch are twisted in different ways.Comment: 19 pages, canceled the appendix (Properties of the index bundle) in order to avoid any text overlap with arXiv:1005.207
    corecore