1,152 research outputs found

    Hybridized solid-state qubit in the charge-flux regime

    Full text link
    Most superconducting qubits operate in a regime dominated by either the electrical charge or the magnetic flux. Here we study an intermediate case: a hybridized charge-flux qubit with a third Josephson junction (JJ) added into the SQUID loop of the Cooper-pair box. This additional JJ allows the optimal design of a low-decoherence qubit. Both charge and flux 1/f1/f noises are considered. Moreover, we show that an efficient quantum measurement of either the current or the charge can be achieved by using different area sizes for the third JJ.Comment: 7 pages, 5 figures. Phys. Rev. B, in pres

    Optomechanical-like coupling between superconducting resonators

    Get PDF
    We propose and analyze a circuit that implements a nonlinear coupling between two superconducting microwave resonators. The resonators are coupled through a superconducting quantum interference device (SQUID) that terminates one of the resonators. This produces a nonlinear interaction on the standard optomechanical form, where the quadrature of one resonator couples to the photon number of the other resonator. The circuit therefore allows for all-electrical realizations of analogs to optomechanical systems, with coupling that can be both strong and tunable. We estimate the coupling strengths that should be attainable with the proposed device, and we find that the device is a promising candidate for realizing the single-photon strong-coupling regime. As a potential application, we discuss implementations of networks of nonlinearly-coupled microwave resonators, which could be used in microwave-photon based quantum simulation.Comment: 10 pages, 7 figure

    Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Full text link
    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we present an experimentally realizable method to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states. Our results show that the inter-box Coulomb correlation can help significantly suppress decoherence of this two-level system, making it a promising candidate as a logical qubit, encoded using two CPBs.Comment: 5 pages, 2 figures. Phys. Rev. B, in pres
    • …
    corecore