92 research outputs found

    Quasinormal Modes and Stability Criterion of Dilatonic Black Hole in 1+1 and 4+1 Dimensions

    Full text link
    We study the stability of black holes that are solutions of the dilaton gravity derived from string-theoretical models in two and five dimensions against to scalar field perturbations, using the Quasinormal Modes (QNMs) approach. In order to find the QNMs corresponding to a black hole geometry, we consider perturbations described by a massive scalar field non-minimally coupled to gravity. We find that the QNM's frequencies turn out to be pure imaginary leading to purely damped modes, that is in agreement with the literature of dilatonic black holes. Our result exhibits the unstable behavior of the considered geometry against the scalar perturbations. We consider both the minimal coupling case, i.e., for which the coupling parameter ζ\zeta vanishes, and the case ζ=1/4\zeta={1/4}.Comment: sevarl changes, some reference was added, 10 pages, 4 figure

    Exact Gravitational Quasinormal Frequencies of Topological Black Holes

    Get PDF
    We compute the exact gravitational quasinormal frequencies for massless topological black holes in d-dimensional anti-de Sitter space. Using the gauge invariant formalism for gravitational perturbations derived by Kodama and Ishibashi, we show that in all cases the scalar, vector, and tensor modes can be reduced to a simple scalar field equation. This equation is exactly solvable in terms of hypergeometric functions, thus allowing an exact analytic determination of the gravitational quasinormal frequencies.Comment: 14 pages, Latex; v2 additional reference

    Bounding the greybody factors for Schwarzschild black holes

    Full text link
    Greybody factors in black hole physics modify the naive Planckian spectrum that is predicted for Hawking radiation when working in the limit of geometrical optics. We consider the Schwarzschild geometry in (3+1) dimensions, and analyze the Regge-Wheeler equation for arbitrary particle spin S and wave-mode angular momentum L, deriving rigourous bounds on the greybody factors as a function of S, L, wave frequency (omega), and the black hole mass, m.Comment: 5 pages; revtex4; V2 - two references adde

    Dynamical evolution of a scalar field coupling to Einstein's tensor in the Reissner-Nordstr\"{o}m black hole spacetime

    Full text link
    We study the dynamical evolution of a scalar field coupling to Einstein's tensor in the background of Reissner-Nordstr\"{o}m black hole. Our results show that the the coupling constant η\eta imprints in the wave dynamics of a scalar perturbation. In the weak coupling, we find that with the increase of the coupling constant η\eta the real parts of the fundamental quasinormal frequencies decrease and the absolute values of imaginary parts increase for fixed charge qq and multipole number ll. In the strong coupling, we find that for l≠0l\neq0 the instability occurs when η\eta is larger than a certain threshold value ηc\eta_c which deceases with the multipole number ll and charge qq. However, for the lowest l=0l=0, we find that there does not exist such a threshold value and the scalar field always decays for arbitrary coupling constant.Comment: 11 pages, 6 figures, accepted for publication in Phys Rev

    Quasinormal modes of black holes localized on the Randall-Sundrum 2-brane

    Full text link
    We investigate conformal scalar, electromagnetic, and massless Dirac quasinormal modes of a brane-localized black hole. The background solution is the four-dimensional black hole on a 2-brane that has been constructed by Emparan, Horowitz, and Myers in the context of a lower dimensional version of the Randall-Sundrum model. The conformally transformed metric admits a Killing tensor, allowing us to obtain separable field equations. We find that the radial equations take the same form as in the four-dimensional "braneless" Schwarzschild black hole. The angular equations are, however, different from the standard ones, leading to a different prediction for quasinormal frequencies.Comment: 10 pages, 7 figures; references added, version to appear in PR

    Massive scalar field quasi-normal modes of higher dimensional black holes

    Get PDF
    We study quasinormal spectrum of massive scalar field in the DD-dimensional black hole background. We found the qualitatively different dependence on the field mass of the fundamental modes for D≥6D\geq6. The behaviour of higher modes is qualitatively the same for all DD. Thus for some particular values of mass (of the field and of the black hole) the spectrum has two dominating oscillations with a very long lifetime. Also we show that the asymptotically high overtones do not depend on the field mass. In addition, we present the generalisation of the Nollert improvement of the continued fraction technique for the numerical calculation of quasi-normal frequencies of DD-dimensional black holes.Comment: 8 pages, 4 figures, misprints corrected, version to appear in Phys. Rev.

    Gravitational instability of simply rotating AdS black holes in higher dimensions

    Full text link
    We study the stability of AdS black hole holes rotating in a single two plane for tensor-type gravitational perturbations in D>6D > 6 space-time dimensions. First, by an analytic method, we show that there exists no unstable mode when the magnitude aa of the angular momentum is smaller than rh2/Rr_h^2/R where rhr_h is the horizon radius, and RR is the AdS curvature radius. Then, by numerical calculations of quasinormal modes, using the separability of the relevant perturbation equations, we show that an instability occurs for rapidly rotating black holes with a>rh2/Ra>r_h^2/R, although the growth rate is tiny (of order 10−1210^{-12} of the inverse horizon radius). We give numerical evidences indicating that this instability is caused by superradiance.Comment: 17 page

    Quantum oscillations and black hole ringing

    Get PDF
    We show that strongly coupled field theories with holographic gravity duals at finite charge density and low temperatures can undergo de Haas - van Alphen quantum oscillations as a function of an external magnetic field. Exhibiting this effect requires computation of the one loop contribution of charged bulk fermions to the free energy. The one loop calculation is performed using a formula expressing determinants in black hole backgrounds as sums over quasinormal modes. At zero temperature, the periodic nonanalyticities in the magnetic susceptibility as a function of the inverse magnetic field depend on the low energy scaling behavior of fermionic operators in the field theory, and are found to be softer than in weakly coupled theories. We also obtain numerical and WKB results for the quasinormal modes of charged bosons in dyonic black hole backgrounds, finding evidence for nontrivial periodic behavior as a function of the magnetic field.Comment: 1+53 pages. 9 figures. v2: important changes to sections 3.4 - 3.6. contribution of branch cut poles include

    Quasi-Normal Modes of Brane-Localised Standard Model Fields II: Kerr Black Holes

    Full text link
    This paper presents a comprehensive study of the fundamental quasinormal modes of all Standard Model fields propagating on a brane embedded in a higher-dimensional rotating black hole spacetime. The equations of motion for fields with spin s=0,1/2s=0, 1/2 and 1 propagating in the induced-on-the-brane background are solved numerically, and the dependence of their QN spectra on the black hole angular momentum and dimensionality of spacetime is investigated. It is found that the brane-localised field perturbations are longer-lived when the higher-dimensional black hole rotates faster, while an increase in the number of transverse-to-the-brane dimensions reduces their lifetime. Finally, the quality factor QQ, that determines the best oscillator among the different field perturbations, is investigated and found to depend on properties of both the particular field studied (spin, multipole numbers) and the gravitational background (dimensionality, black hole angular momentum number).Comment: 12 pages, 8 figures, typos corrected, version to appear in Phys. Rev.
    • …
    corecore