40 research outputs found
Natural immunity to SARS-CoV-2 and breakthrough infections in vaccinated and unvaccinated patients with cancer
Background Consolidated evidence suggests spontaneous immunity from SARS-CoV-2 is not durable, leading to the risk of reinfection, especially in the context of newly emerging viral strains. In patients with cancer who survive COVID-19 prevalence and severity of SARS-CoV-2 reinfections are unknown. Methods We aimed to document natural history and outcome from SARS-CoV-2 reinfection in patients recruited to OnCovid (NCT04393974), an active European registry enrolling consecutive patients with a history of solid or haematologic malignancy diagnosed with COVID-19. Results As of December 2021, out of 3108 eligible participants, 1806 COVID-19 survivors were subsequently followed at participating institutions. Among them, 34 reinfections (1.9%) were reported after a median time of 152 days (range: 40–620) from the first COVID-19 diagnosis, and with a median observation period from the second infection of 115 days (95% CI: 27–196). Most of the first infections were diagnosed in 2020 (27, 79.4%), while most of reinfections in 2021 (25, 73.5%). Haematological malignancies were the most frequent primary tumour (12, 35%). Compared to first infections, second infections had lower prevalence of COVID-19 symptoms (52.9% vs 91.2%, P = 0.0008) and required less COVID-19-specific therapy (11.8% vs 50%, P = 0.0013). Overall, 11 patients (32.4%) and 3 (8.8%) were fully and partially vaccinated against SARS-CoV-2 before the second infection, respectively. The 14-day case fatality rate was 11.8%, with four death events, none of which among fully vaccinated patients. Conclusion This study shows that reinfections in COVID-19 survivors with cancer are possible and more common in patients with haematological malignancies. Reinfections carry a 11% risk of mortality, which rises to 15% among unvaccinated patients, highlighting the importance of universal vaccination of patients with cancer
Outcomes of the SARS-CoV-2 omicron (B.1.1.529) variant outbreak among vaccinated and unvaccinated patients with cancer in Europe: results from the retrospective, multicentre, OnCovid registry study
BACKGROUND: The omicron (B.1.1.529) variant of SARS-CoV-2 is highly transmissible and escapes vaccine-induced immunity. We aimed to describe outcomes due to COVID-19 during the omicron outbreak compared with the prevaccination period and alpha (B.1.1.7) and delta (B.1.617.2) waves in patients with cancer in Europe. METHODS: In this retrospective analysis of the multicentre OnCovid Registry study, we recruited patients aged 18 years or older with laboratory-confirmed diagnosis of SARS-CoV-2, who had a history of solid or haematological malignancy that was either active or in remission. Patient were recruited from 37 oncology centres from UK, Italy, Spain, France, Belgium, and Germany. Participants were followed up from COVID-19 diagnosis until death or loss to follow-up, while being treated as per standard of care. For this analysis, we excluded data from centres that did not actively enter new data after March 1, 2021 (in France, Germany, and Belgium). We compared measures of COVID-19 morbidity, which were complications from COVID-19, hospitalisation due to COVID-19, and requirement of supplemental oxygen and COVID-19-specific therapies, and COVID-19 mortality across three time periods designated as the prevaccination (Feb 27 to Nov 30, 2020), alpha-delta (Dec 1, 2020, to Dec 14, 2021), and omicron (Dec 15, 2021, to Jan 31, 2022) phases. We assessed all-cause case-fatality rates at 14 days and 28 days after diagnosis of COVID-19 overall and in unvaccinated and fully vaccinated patients and in those who received a booster dose, after adjusting for country of origin, sex, age, comorbidities, tumour type, stage, and status, and receipt of systemic anti-cancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974, and is ongoing. FINDINGS: As of Feb 4, 2022 (database lock), the registry included 3820 patients who had been diagnosed with COVID-19 between Feb 27, 2020, and Jan 31, 2022. 3473 patients were eligible for inclusion (1640 [47·4%] were women and 1822 [52·6%] were men, with a median age of 68 years [IQR 57–77]). 2033 (58·5%) of 3473 were diagnosed during the prevaccination phase, 1075 (31·0%) during the alpha-delta phase, and 365 (10·5%) during the omicron phase. Among patients diagnosed during the omicron phase, 113 (33·3%) of 339 were fully vaccinated and 165 (48·7%) were boosted, whereas among those diagnosed during the alpha-delta phase, 152 (16·6%) of 915 were fully vaccinated and 21 (2·3%) were boosted. Compared with patients diagnosed during the prevaccination period, those who were diagnosed during the omicron phase had lower case-fatality rates at 14 days (adjusted odds ratio [OR] 0·32 [95% CI 0·19–0·61) and 28 days (0·34 [0·16–0·79]), complications due to COVID-19 (0·26 [0·17–0·46]), and hospitalisation due to COVID-19 (0·17 [0·09–0·32]), and had less requirements for COVID-19-specific therapy (0·22 [0·15–0·34]) and oxygen therapy (0·24 [0·14–0·43]) than did those diagnosed during the alpha-delta phase. Unvaccinated patients diagnosed during the omicron phase had similar crude case-fatality rates at 14 days (ten [25%] of 40 patients vs 114 [17%] of 656) and at 28 days (11 [27%] of 40 vs 184 [28%] of 656) and similar rates of hospitalisation due to COVID-19 (18 [43%] of 42 vs 266 [41%] of 652) and complications from COVID-19 (13 [31%] of 42 vs 237 [36%] of 659) as those diagnosed during the alpha-delta phase. INTERPRETATION: Despite time-dependent improvements in outcomes reported in the omicron phase compared with the earlier phases of the pandemic, patients with cancer remain highly susceptible to SARS-CoV-2 if they are not vaccinated against SARS-CoV-2. Our findings support universal vaccination of patients with cancer as a protective measure against morbidity and mortality from COVID-19. FUNDING: National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust
SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry
BACKGROUND: COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. METHODS: OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)-delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. FINDINGS: At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24-68) from COVID-19 diagnosis, were included (964 [50·7%] of 1902 patients with sex data were female and 938 [49·3%] were male). Overall, 317 (16·6%; 95% CI 14·8-18·5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the pre-vaccination phase (191 [19·1%; 95% CI 16·4-22·0] of 1000 patients). The prevalence was similar in the alpha-delta phase (110 [16·8%; 13·8-20·3] of 653 patients, p=0·24), but significantly lower in the omicron phase (16 [6·2%; 3·5-10·2] of 256 patients, p<0·0001). In the alpha-delta phase, 84 (18·3%; 95% CI 14·6-22·7) of 458 unvaccinated patients and three (9·4%; 1·9-27·3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7·4%; 95% CI 3·5-13·5] of 136 boosted patients, 18 [9·8%; 5·8-15·5] of 183 patients who had two vaccine doses vs 277 [18·5%; 16·5-20·9] of 1489 unvaccinated patients, p=0·0001), respiratory sequelae (six [4·4%; 1·6-9·6], 11 [6·0%; 3·0-10·7] vs 148 [9·9%; 8·4-11·6], p=0·030), and prolonged fatigue (three [2·2%; 0·1-6·4], ten [5·4%; 2·6-10·0] vs 115 [7·7%; 6·3-9·3], p=0·037). INTERPRETATION: Unvaccinated patients with cancer remain highly vulnerable to COVID-19 sequelae irrespective of viral strain. This study confirms the role of previous SARS-CoV-2 immunisation as an effective measure to protect patients from COVID-19 sequelae, disruption of therapy, and ensuing mortality. FUNDING: UK National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust
Tilt aftereffect following adaptation to translational Glass patterns
Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention
Natural immunity to SARS-CoV-2 and breakthrough infections in vaccinated and unvaccinated patients with cancer
Background: Consolidated evidence suggests spontaneous immunity from SARS-CoV-2 is not durable, leading to the risk of reinfection, especially in the context of newly emerging viral strains. In patients with cancer who survive COVID-19 prevalence and severity of SARS-CoV-2 reinfections are unknown. Methods: We aimed to document natural history and outcome from SARS-CoV-2 reinfection in patients recruited to OnCovid (NCT04393974), an active European registry enrolling consecutive patients with a history of solid or haematologic malignancy diagnosed with COVID-19. Results: As of December 2021, out of 3108 eligible participants, 1806 COVID-19 survivors were subsequently followed at participating institutions. Among them, 34 reinfections (1.9%) were reported after a median time of 152 days (range: 40–620) from the first COVID-19 diagnosis, and with a median observation period from the second infection of 115 days (95% CI: 27–196). Most of the first infections were diagnosed in 2020 (27, 79.4%), while most of reinfections in 2021 (25, 73.5%). Haematological malignancies were the most frequent primary tumour (12, 35%). Compared to first infections, second infections had lower prevalence of COVID-19 symptoms (52.9% vs 91.2%, P = 0.0008) and required less COVID-19-specific therapy (11.8% vs 50%, P = 0.0013). Overall, 11 patients (32.4%) and 3 (8.8%) were fully and partially vaccinated against SARS-CoV-2 before the second infection, respectively. The 14-day case fatality rate was 11.8%, with four death events, none of which among fully vaccinated patients. Conclusion: This study shows that reinfections in COVID-19 survivors with cancer are possible and more common in patients with haematological malignancies. Reinfections carry a 11% risk of mortality, which rises to 15% among unvaccinated patients, highlighting the importance of universal vaccination of patients with cancer