73 research outputs found

    Runko: Modern multi-physics toolbox for simulating plasma

    Full text link
    Runko is a new open-source plasma simulation framework implemented in C++ and Python. It is designed to function as an easy-to-extend general toolbox for simulating astrophysical plasmas with different theoretical and numerical models. Computationally intensive low-level "kernels" are written in modern C++14 taking advantage of polymorphic classes, multiple inheritance, and template metaprogramming. High-level functionality is operated with Python3 scripts. This hybrid program design ensures fast code and ease of use. The framework has a modular object-oriented design that allow the user to easily add new numerical algorithms to the system. The code can be run on various computing platforms ranging from laptops (shared-memory systems) to massively parallel supercomputer architectures (distributed-memory systems). The framework also supports heterogeneous multi-physics simulations in which different physical solvers can be combined and run simultaneously. Here we report on the first results from the framework's relativistic particle-in-cell (PIC) module. Using the PIC module, we simulate decaying relativistic kinetic turbulence in suddenly stirred magnetically-dominated pair plasma. We show that the resulting particle distribution can be separated into a thermal part that forms the turbulent cascade and into a separate decoupled non-thermal particle population that acts as an energy sink for the system.Comment: 17 pages, 6 figures. Comments welcome! Code available from https://github.com/natj/runk

    Models of neutron star atmospheres enriched with nuclear burning ashes

    Get PDF
    Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. These effects may have a substantial impact on the color correction factor fcf_c and the dilution factor ww, the parameters of the diluted blackbody model FE≈wBE(fcTeff)F_E \approx w B_E(f_c T_{eff}) that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition functions (used in the ionization fraction calculations) are now taken into account for all atomic species. In addition, the code is now parallelized to counter the increased computational load. We compute a detailed grid of atmosphere models with different exotic chemical compositions that mimic the presence of the burning ashes. From the emerging model spectra we compute the color correction factors fcf_c and the dilution factors ww that can then be compared to the observations. We find that the metals may change fcf_c by up to about 40%, which is enough to explain the scatter seen in the blackbody radius measurements. The presented models open up the possibility for determining NS mass and radii more accurately, and may also act as a tool to probe the nuclear burning mechanisms of X-ray bursts.Comment: 14 pages, 7 figures, to be published in A&

    Bayesian parameter constraints for neutron star masses and radii using X-ray timing observations of accretion-powered millisecond pulsars

    Full text link
    We present a Bayesian method to constrain the masses and radii of neutron stars (NSs) using the information encoded in the X-ray pulse profiles of accreting millisecond pulsars. We model the shape of the pulses using "oblate Schwarzschild" approximation, which takes into account the deformed shape of the star together with the special and general relativistic corrections to the photon trajectories and angles. The spectrum of the radiation is obtained from an empirical model of Comptonization in a hot slab in which a fraction of seed blackbody photons is scattered into a power-law component. By using an affine-invariant Markov chain Monte Carlo ensemble sampling method, we obtain posterior probability distributions for the different model parameters, especially for the mass and the radius. To test the robustness of our method, we first analyzed self-generated synthetic data with known model parameters. Similar analysis was then applied for the observations of SAX J1808.4-3658 by the Rossi X-ray Timing Explorer (RXTE). The results show that our method can reproduce the model parameters of the synthetic data, and that accurate constraints for the radius can be obtained using the RXTE pulse profile observations if the mass is a priori known. For a mass in the range 1.5-1.8 Msun, the radius of the NS in SAX J1808.4-3658 is constrained between 9 and 13 km. If the mass is accurately known, the radius can be determined with an accuracy of 5% (68% credibility). For example, for the mass of 1.7 Msun the equatorial radius is Req = 11.9+0.5 -0.4 km. Finally, we show that further improvements can be obtained when the X-ray polarization data from the Imaging X-ray Polarimeter Explorer will become available.Comment: 16 pages, 9 figures, published in A&

    Repeated Cyclogenesis on Hot-Exoplanet Atmospheres with Deep Heating

    Full text link
    We study the effect of deep heating (stellar irradiation deposited at the ~10^5 Pa level, as well as in the shallow region at the ~10^3 level) in hot-exoplanet atmospheres. Unlike with shallow heating (only), the atmosphere with deep heating exhibits a single equilibrium state, characterized by repeated generation of giant cyclonic vortices that move away westward from the point of emergence. The generation is accompanied by a burst of heightened turbulence activity, leading to the production of small-scale structures and large-scale mixing of temperature on a timescale of ~3 planetary rotations.Comment: 5 pages, 4 figures, 1 appendi

    Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra

    Full text link
    Observations of thermonuclear X-ray bursts from accreting neutron stars (NSs) in low-mass X-ray binary systems can be used to constrain NS masses and radii. Most previous work of this type has set these constraints using Planck function fits as a proxy: both the models and the data are fit with diluted blackbody functions to yield normalizations and temperatures which are then compared against each other. Here, for the first time, we fit atmosphere models of X-ray bursting NSs directly to the observed spectra. We present a hierarchical Bayesian fitting framework that uses state-of-the-art X-ray bursting NS atmosphere models with realistic opacities and relativistic exact Compton scattering kernels as a model for the surface emission. We test our approach against synthetic data, and find that for data that are well-described by our model we can obtain robust radius, mass, distance, and composition measurements. We then apply our technique to Rossi X-ray Timing Explorer observations of five hard-state X-ray bursts from 4U 1702-429. Our joint fit to all five bursts shows that the theoretical atmosphere models describe the data well but there are still some unmodeled features in the spectrum corresponding to a relative error of 1-5% of the energy flux. After marginalizing over this intrinsic scatter, we find that at 68% credibility the circumferential radius of the NS in 4U 1702-429 is R = 12.4+-0.4 km, the gravitational mass is M=1.9+-0.3 Msun, the distance is 5.1 < D/kpc < 6.2, and the hydrogen mass fraction is X < 0.09.Comment: 15 pages, 11 figures, submitted to A&

    Radiation from rapidly rotating oblate neutron stars

    Get PDF
    A theoretical framework for emission originating from rapidly rotating oblate compact objects is described in detail. Using a Hamilton-Jacobi formalism, we show that special relativistic rotational effects such as aberration of angles, Doppler boosting, and time dilatation naturally emerge from the general relativistic treatment of rotating compact objects. We use the Butterworth-Ipser metric expanded up to the second order in rotation and hence include effects of light bending, frame-dragging, and quadrupole deviations on our geodesic calculations. We also give detailed descriptions of the numerical algorithms used and provide an open-source implementation of the numerical framework called BENDER. As an application, we study spectral line profiles (i.e., smearing kernels) from rapidly rotating oblate neutron stars. We find that in this metric description, the second-order quadrupole effects are not strong enough to produce narrow observable features in the spectral energy distribution for almost any physically realistic parameter combination, and hence, actually detecting them is unlikely. The full width at tenth-maximum and full width at half-maximum of the rotation smearing kernels are also reported for all viewing angles. These can then be used to quantitatively estimate the effects of rotational smearing on the observed spectra. We also calculate accurate pulse profiles and observer skymaps of emission from hot spots on rapidly rotating accreting millisecond pulsars. These allow us to quantify the strength of the pulse fractions one expects to observe from typical fast-spinning millisecond pulsars

    Pulsar Wind-heated Accretion Disk and the Origin of Modes in Transitional Millisecond Pulsar PSR J1023+0038

    Get PDF
    Transitional millisecond pulsars provide a unique set of observational data for understanding accretion at low rates onto magnetized neutron stars. In particular, PSR.J1023+0038 exhibits a remarkable bimodality of the X-ray luminosity (low and high modes), pulsations extending from the X-ray to the optical band, GeV emission, and occasional X-ray flares. We discuss a scenario for the pulsar interaction with the accretion disk capable of explaining the observed behavior. We suggest that during the high mode the disk is truncated outside the light cylinder, allowing the pulsar wind to develop near the equatorial plane and strike the disk. The dissipative wind-disk collision energizes the disk particles and generates synchrotron emission, which peaks in the X-ray band and extends down to the optical band. The emission is modulated by the pulsar wind rotation, resulting in a pulse profile with two peaks 180 degrees apart. This picture explains the high mode luminosity, spectrum, and pulse profile (X-ray and optical) of PSR.J1023+0038. It may also explain the X-ray flares as events of sudden increase in the effective disk cross section intercepting the wind. In contrast to previously proposed models, we suggest that the disk penetrates the light cylinder only during the low X-ray mode. This penetration suppresses the dissipation caused by the pulsar wind-disk collision, and the system enters the propeller regime. The small duty cycle of the propeller explains the low spin-down rate of the pulsar

    New applications for the Boris Spectral Deferred Correction algorithm for plasma simulations

    Get PDF
    The paper investigates two new use cases for the Boris Spectral Deferred Corrections (Boris-SDC) time integrator for plasma simulations. First, we show that using Boris-SDC as a particle pusher in an electrostatic particle-in-cell (PIC) code can, at least in the linear regime, improve simulation accuracy compared with the standard second order Boris method. In some instances, the higher order of Boris-SDC even allows a much larger time step, leading to modest computational gains. Second, we propose a modification of Boris-SDC for the relativistic regime. Based on an implementation of Boris-SDC in the RUNKO PIC code, we demonstrate for a relativistic Penning trap that Boris-SDC retains its high order of convergence for velocities ranging from 0.5c to >0.99c
    • 

    corecore