790 research outputs found

    A New Timescale for Period Change in the Pulsating DA White Dwarf WD 0111+0018

    Get PDF
    We report the most rapid rate of period change measured to date for a pulsating DA (hydrogen atmosphere) white dwarf (WD), observed in the 292.9 s mode of WD 0111+0018. The observed period change, faster than 10^{-12} s/s, exceeds by more than two orders of magnitude the expected rate from cooling alone for this class of slow and simply evolving pulsating WDs. This result indicates the presence of an additional timescale for period evolution in these pulsating objects. We also measure the rates of period change of nonlinear combination frequencies and show that they share the evolutionary characteristics of their parent modes, confirming that these combination frequencies are not independent modes but rather artifacts of some nonlinear distortion in the outer layers of the star.Comment: 10 pages, 6 figures, accepted for publication in The Astrophysical Journa

    JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response

    Get PDF
    Cancers result from the accumulation of genetic lesions, but the cellular consequences of driver mutations remain unclear, especially during the earliest stages of malignancy. The V617F mutation in the JAK2 non-receptor tyrosine kinase (JAK2V617F) is present as an early somatic event in most patients with myeloproliferative neoplasms (MPNs), and the study of these chronic myeloid malignancies provides an experimentally tractable approach to understanding early tumorigenesis. Introduction of exogenous JAK2V617F impairs replication fork progression and is associated with activation of the intra-S checkpoint, with both effects mediated by phosphatidylinositide 3-kinase (PI3K) signaling. Analysis of clonally derived JAK2V617F-positive erythroblasts from MPN patients also demonstrated impaired replication fork progression accompanied by increased levels of replication protein A (RPA)-containing foci. However, the associated intra-S checkpoint response was impaired in erythroblasts from polycythemia vera (PV) patients, but not in those from essential thrombocythemia (ET) patients. Moreover, inhibition of p53 in PV erythroblasts resulted in more gamma-H2Ax (γ-H2Ax)–marked double-stranded breaks compared with in like-treated ET erythroblasts, suggesting the defective intra-S checkpoint function seen in PV increases DNA damage in the context of attenuated p53 signaling. These results demonstrate oncogene-induced impairment of replication fork progression in primary cells from MPN patients, reveal unexpected disease-restricted differences in activation of the intra-S checkpoint, and have potential implications for the clonal evolution of malignancies

    Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine ß-lactoglobulin

    Get PDF
    peer-reviewedThe angiotensin-I-converting enzyme (ACE) inhibitory activity of a tryptic digest of bovine β-lactoglobulin (β-lg) was investigated. Intact β-lg essentially did not inhibit ACE while the tryptic digest gave an 84.3% inhibition of ACE. Peptide material eluting between 20 and 25% acetonitrile during C18 solid-phase extraction of the β-lg tryptic digest inhibited ACE by 93.6%. This solid-phase extraction fraction was shown by mass spectroscopy to contain β-lg f(142–148). This peptide had an ACE IC50 value of 42.6 μmol/l. The peptide was resistant to further digestion with pepsin and was hydrolysed to a very low extent with chymotrypsin. The contribution of specific amino acid residues within the peptide to ACE inhibitory activity and the potential application of this peptide as a nutraceutical is discussed

    The New Class of Dusty DAZ White Dwarfs

    Get PDF
    Our mid-infrared survey of 124 white dwarfs with the Spitzer Space Telescope and the IRAC imager has revealed an infrared excess associated with the white dwarf WD 2115-560 naturally explained by circumstellar dust. This object is the fourth white dwarf observed to have circumstellar dust. All four are DAZ white dwarfs, i.e. they have both photospheric Balmer lines and photospheric metal lines. We discuss these four objects as a class, which we abbreviate "DAZd", where the "d" stands for "dust". Using an optically-thick, geometrically-thin disk model analogous to Saturn's rings, we find that the inner disk edges are at >~0.1 to 0.2 Ro and that the outer disk edges are ~0.3 to 0.6 Ro. This model naturally explains the accretion rates and lifetimes of the detected WD disks and the accretion rates inferred from photospheric metal abundances.Comment: 27 pages, 7 figures, ApJ accepte

    Sirius B Imaged in the Mid-Infrared: No Evidence for a Remnant Planetary System

    Full text link
    Evidence is building that remnants of solar systems might orbit a large percentage of white dwarfs, as the polluted atmospheres of DAZ and DBZ white dwarfs indicate the very recent accretion of metal-rich material. (Zuckerman et al. 2010). Some of these polluted white dwarfs are found to have large mid-infrared excesses from close-in debris disks that are thought to be reservoirs for the metal accretion. These systems are coined DAZd white dwarfs (von Hippel et al. 2007). Here we investigate the claims of Bonnet-Bidaud & Pantin (2008) that Sirius B, the nearest white dwarf to the Sun, might have an infrared excess from a dusty debris disk. Sirius B's companion, Sirius A is commonly observed as a mid-infrared photometric standard in the Southern hemisphere. We combine several years of Gemini/T-ReCS photometric standard observations to produce deep mid-infrared imaging in five ~10 micron filters (broad N + 4 narrowband), which reveal the presence of Sirius B. Our photometry is consistent with the expected photospheric emission such that we constrain any mid-infrared excess to <10% of the photosphere. Thus we conclude that Sirius B does not have a large dusty disk, as seen in DAZd white dwarfs.Comment: 13 pages, 3 figures, accepted to Ap

    New Pulsating DB White Dwarf Stars from the Sloan Digital Sky Survey

    Full text link
    We are searching for new He atmosphere white dwarf pulsators (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, the H atmosphere white dwarf pulsators (DAVs or ZZ Ceti stars). Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. So far we have discovered nine new DBVs, doubling the number of previously known DBVs. Here we report the new pulsators' lightcurves and power spectra.Comment: 15 pages, 2 figures, 3 tables, ApJ accepte
    corecore