220 research outputs found

    On the stability of Hamiltonian relative equilibria with non-trivial isotropy

    Full text link
    We consider Hamiltonian systems with symmetry, and relative equilibria with isotropy subgroup of positive dimension. The stability of such relative equilibria has been studied by Ortega and Ratiu and by Lerman and Singer. In both papers the authors give sufficient conditions for stability which require first determining a splitting of a subspace of the Lie algebra of the symmetry group, with different splittings giving different criteria. In this note we remove this splitting construction and so provide a more general and more easily computed criterion for stability. The result is also extended to apply to systems whose momentum map is not coadjoint equivariant

    Point vortices on the hyperbolic plane

    Full text link
    We investigate some properties of the dynamical system of point vortices on the hyperboloid. This system has noncompact symmetry SL(2, R) and a coadjoint equivariant momentum map J. The relative equilibrium conditions are found and the trajectories of relative equilibria with non-zero momentum value are described. We also provide the classification of relative equilibria and the stability criteria for a number of cases, focusing on N=2, 3. Contrary to the system on the sphere, relative equilibria with non-compact momentum isotropy subgroup are found, and are used to illustrate the different stability types of relative equilibria.Comment: To appear in J. Mathematical Physic

    Point vortices on the sphere: a case with opposite vorticities

    Full text link
    We study systems formed of 2N point vortices on a sphere with N vortices of strength +1 and N vortices of strength -1. In this case, the Hamiltonian is conserved by the symmetry which exchanges the positive vortices with the negative vortices. We prove the existence of some fixed and relative equilibria, and then study their stability with the ``Energy Momentum Method''. Most of the results obtained are nonlinear stability results. To end, some bifurcations are described.Comment: 35 pages, 9 figure

    Relative Lyapunov Center Bifurcations

    Full text link

    Stability of relative equilibria with singular momentum values in simple mechanical systems

    Full text link
    A method for testing GμG_\mu-stability of relative equilibria in Hamiltonian systems of the form "kinetic + potential energy" is presented. This method extends the Reduced Energy-Momentum Method of Simo et al. to the case of non-free group actions and singular momentum values. A normal form for the symplectic matrix at a relative equilibrium is also obtained.Comment: Partially rewritten. Some mistakes fixed. Exposition improve

    Deformation of geometry and bifurcation of vortex rings

    Full text link
    We construct a smooth family of Hamiltonian systems, together with a family of group symmetries and momentum maps, for the dynamics of point vortices on surfaces parametrized by the curvature of the surface. Equivariant bifurcations in this family are characterized, whence the stability of the Thomson heptagon is deduced without recourse to the Birkhoff normal form, which has hitherto been a necessary tool.Comment: 26 page

    Golden gaskets: variations on the Sierpi\'nski sieve

    Full text link
    We consider the iterated function systems (IFSs) that consist of three general similitudes in the plane with centres at three non-collinear points, and with a common contraction factor \la\in(0,1). As is well known, for \la=1/2 the invariant set, \S_\la, is a fractal called the Sierpi\'nski sieve, and for \la<1/2 it is also a fractal. Our goal is to study \S_\la for this IFS for 1/2<\la<2/3, i.e., when there are "overlaps" in \S_\la as well as "holes". In this introductory paper we show that despite the overlaps (i.e., the Open Set Condition breaking down completely), the attractor can still be a totally self-similar fractal, although this happens only for a very special family of algebraic \la's (so-called "multinacci numbers"). We evaluate \dim_H(\S_\la) for these special values by showing that \S_\la is essentially the attractor for an infinite IFS which does satisfy the Open Set Condition. We also show that the set of points in the attractor with a unique ``address'' is self-similar, and compute its dimension. For ``non-multinacci'' values of \la we show that if \la is close to 2/3, then \S_\la has a nonempty interior and that if \la<1/\sqrt{3} then \S_\la$ has zero Lebesgue measure. Finally we discuss higher-dimensional analogues of the model in question.Comment: 27 pages, 10 figure
    • …
    corecore