220 research outputs found
On the stability of Hamiltonian relative equilibria with non-trivial isotropy
We consider Hamiltonian systems with symmetry, and relative equilibria with
isotropy subgroup of positive dimension. The stability of such relative
equilibria has been studied by Ortega and Ratiu and by Lerman and Singer. In
both papers the authors give sufficient conditions for stability which require
first determining a splitting of a subspace of the Lie algebra of the symmetry
group, with different splittings giving different criteria. In this note we
remove this splitting construction and so provide a more general and more
easily computed criterion for stability. The result is also extended to apply
to systems whose momentum map is not coadjoint equivariant
Point vortices on the hyperbolic plane
We investigate some properties of the dynamical system of point vortices on
the hyperboloid. This system has noncompact symmetry SL(2, R) and a coadjoint
equivariant momentum map J. The relative equilibrium conditions are found and
the trajectories of relative equilibria with non-zero momentum value are
described. We also provide the classification of relative equilibria and the
stability criteria for a number of cases, focusing on N=2, 3. Contrary to the
system on the sphere, relative equilibria with non-compact momentum isotropy
subgroup are found, and are used to illustrate the different stability types of
relative equilibria.Comment: To appear in J. Mathematical Physic
Point vortices on the sphere: a case with opposite vorticities
We study systems formed of 2N point vortices on a sphere with N vortices of
strength +1 and N vortices of strength -1. In this case, the Hamiltonian is
conserved by the symmetry which exchanges the positive vortices with the
negative vortices. We prove the existence of some fixed and relative
equilibria, and then study their stability with the ``Energy Momentum Method''.
Most of the results obtained are nonlinear stability results. To end, some
bifurcations are described.Comment: 35 pages, 9 figure
Stability of relative equilibria with singular momentum values in simple mechanical systems
A method for testing -stability of relative equilibria in Hamiltonian
systems of the form "kinetic + potential energy" is presented. This method
extends the Reduced Energy-Momentum Method of Simo et al. to the case of
non-free group actions and singular momentum values. A normal form for the
symplectic matrix at a relative equilibrium is also obtained.Comment: Partially rewritten. Some mistakes fixed. Exposition improve
Deformation of geometry and bifurcation of vortex rings
We construct a smooth family of Hamiltonian systems, together with a family
of group symmetries and momentum maps, for the dynamics of point vortices on
surfaces parametrized by the curvature of the surface. Equivariant bifurcations
in this family are characterized, whence the stability of the Thomson heptagon
is deduced without recourse to the Birkhoff normal form, which has hitherto
been a necessary tool.Comment: 26 page
Golden gaskets: variations on the Sierpi\'nski sieve
We consider the iterated function systems (IFSs) that consist of three
general similitudes in the plane with centres at three non-collinear points,
and with a common contraction factor \la\in(0,1).
As is well known, for \la=1/2 the invariant set, \S_\la, is a fractal
called the Sierpi\'nski sieve, and for \la<1/2 it is also a fractal. Our goal
is to study \S_\la for this IFS for 1/2<\la<2/3, i.e., when there are
"overlaps" in \S_\la as well as "holes". In this introductory paper we show
that despite the overlaps (i.e., the Open Set Condition breaking down
completely), the attractor can still be a totally self-similar fractal,
although this happens only for a very special family of algebraic \la's
(so-called "multinacci numbers"). We evaluate \dim_H(\S_\la) for these
special values by showing that \S_\la is essentially the attractor for an
infinite IFS which does satisfy the Open Set Condition. We also show that the
set of points in the attractor with a unique ``address'' is self-similar, and
compute its dimension.
For ``non-multinacci'' values of \la we show that if \la is close to 2/3,
then \S_\la has a nonempty interior and that if \la<1/\sqrt{3} then \S_\la$
has zero Lebesgue measure. Finally we discuss higher-dimensional analogues of
the model in question.Comment: 27 pages, 10 figure
- …