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Multiplicities of zero-schemes in quasihomogeneous

corank-1 singularities Cn → Cn

W.L. Marar, J.A. Montaldi, M.A.S. Ruas

Abstract

How many cusps does a swallowtail have,
After it becomes a stable map,
And how many swallowtails does a butterfly have,
After it . . . (with apologies to B. Dylan)

Published in:
Singularity Theory (ed. Bill Bruce, David Mond).
LMS Lecture Notes Series Vol. 263, CUP, 1999

Introduction

Consider the map

F : C2 → C2

(x, y) 7→ (x, y4 + xy),

(which is a section of the swallowtail singularity) and its perturbation

Fε(x, y) = (x, y4 + xy + εy2).

The singular set of F is given by 4y3 + x = 0, and the discriminant ∆(F ) of F (the
image of its singular set) is a curve with a singular point at the origin. The singular set
of Fε is also a smooth curve, but its image ∆(Fε) is a curve with 2 cusps (A2-points)
and a double point (an A(1,1)-point) — see Figure 1.

It turns out (and is well-known) that the number of cusps and double points is in-
dependent of the perturbation, provided the perturbation is a stable map. T. Fukuda
and G. Ishikawa [3] show that the number of cusps is given by the dimension of a local

Figure 1: Discriminants of F and Fε — the swallowtail
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algebra associated to F , and independently J. Rieger [15] gives formulae for both the
number of cusps and the number of double points in the case that F is of corank 1
— see also [16]. T. Gaffney and D. Mond [6] give formulae for both the number of
cusps and the number of double points for a general A-finitely-determined map-germ
C2 → C2.

In this paper, we consider the analogous problem for map-germs F : Cn → Cn;
that is, given such a map-germ, consider a perturbation which is stable, and ask how
many occurrences of each isolated feature in ∆(Fε) there are. The features are the
zero-schemes of the title, and the numbers are the multiplicities. We are able to give
answers in the case that F is of corank 1. In particular, if F is weighted homogeneous,
then we give a closed formula (Theorem 1) for these numbers in terms of the weights
and degrees of F . However, unlike Fukuda, Ishikawa and Rieger, we do not consider
the case of real map-germs.

The final section 3 of the paper uses this result to give a formula for the multi-
plicities of the strata in the generalized swallowtail discriminant (Theorem 9).

A 3-dimensional example analogous to the swallowtail one above can be obtained
by taking a section of the butterfly:

F : C3 → C3

(x1, x2, y) 7→ (x1, x2, y
5 + x1y

2 + x2y).

Here the singular set is a smooth surface in C3, whose image ∆(F ) is a surface with
a cuspidal edge and a more degenerate point at the origin. A stable perturbation (or
stabilization) Fε can be given by

Fε(x1, x2, y) = (x1, x2, y
5 + x1y

2 + x2y + εy3).

A schematic illustration of ∆(Fε) is given in Figure 2. The interesting isolated features
(zero-schemes) of ∆(Fε) are the 2 swallowtail points (A3-points), and the 2 points
where a cuspidal edge passes through a smooth sheet (A(2,1)-points). There could in
principle be a further isolated feature, namely a triple point of ∆(Fε) where three
smooth sheets intersect (A(1,1,1)-points), but such a singularity does not occur in this
example. The purpose of this paper is to be able to predict these numbers from the
form of F , without studying Fε explicitly. For example, if y5 were replaced by y6 in
the butterfly example above, then according to Theorem 1, any stabilization would
have one A(1,1,1)-point, six A(2,1)-points and three A3-points. See Example 2 below.

In general, let F : (Cn, 0) → (Cn, 0) be a map-germ with a degenerate (non-
stable) singularity, and let Fε be a 1-parameter stabilization of F (that is, for ε 6= 0,
the map Fε is stable). We assume that F is of corank 1 (that is, dF0 has rank n− 1).
If F is A-finitely-determined, then the singularity of F at 0 splits up into a number
of non-degenerate zero-dimensional stable singularities of Fε, which we now describe.
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Figure 2: Discriminant of Fε (ε < 0) — the butterfly
(thick lines are cuspidal edges, grey lines are self-intersections; broken lines are hidden)

A stable map-germ G : (Cn, 0) → (Cn, 0) has an Ak singularity (k ≤ n) if it is
left-right equivalent to the germ,

(x1, . . . , xn−1, y) 7→ (x1, . . . , xn−1, y
k+1 + x1y

k−1 + · · ·xk−1y).

Moreover, any stable corank 1 map-germ is an Ak for some natural number k. As is
easily seen from this normal form, the set of points in Cn where a stable map has an
Ak singularity is a submanifold of codimension k (given by x1 = · · · = xk−1 = y = 0).
The image of this set is then an immersed submanifold of codimension k. It turns out
that a map with only corank 1 singularities is stable if and only if these submanifolds
in the discriminant are in general position [11, (1.6)].

Definition Suppose the map G : Cn → Cn is stable (and defined on some open
subset of Cn). Let z be in the image of G, and put S = G−1(z) = {s1, . . . , sd}.
Suppose G has an Arj

singularity (rj ≥ 0) at sj (for j = 1, . . . , d). In the image,
the corresponding submanifolds consisting of Arj

singularities intersect at z, for j =
1, . . . , d. Then z represents a zero-scheme if and only if this intersection is zero-
dimensional. Since G is stable, these submanifolds are in general position so this
occurs if and only if r1 + · · · + rd = n. That is, after suppressing those rj equal
to zero, P = (r1, . . . , rℓ) is a partition of n. We call such a multi-singularity an
AP -singularity.
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For example, in the case n = 2, the two possibilities of zero-schemes are a cusp,
with P = (2), and a double-fold, with P = (1, 1); for n = 3 the three possibilities
are a swallowtail, with P = (3), a fold-cusp, with P = (2, 1) and a triple fold, with
P = (1, 1, 1) — as in the examples above.

The question we address is, given an A-finite map-germ F : (Cn, 0) → (Cn, 0)
(i.e. of finite A-codimension or equivalently A-finitely determined), and a partition
P of n, how many AP singularities are there in a stabilization of F , in a suitably
small neighbourhood of 0? This number is independent of the particular stabilization
chosen, and we denote it #AP(F ) or simply #AP .

We consider corank-1 map-germs from X = (Cn, 0) to Y = (Cn, 0). Choosing
linearly adapted coordinates, we write

F : Cn−1 × C → Cn−1 × C

(x, y) 7→ (x, f(x, y)).
(1)

When F is weighted homogeneous, we put,

w0 = wt(y), wi = wt(xi),

d = degree(f), w =
∏n−1

i=1 wi.
(2)

Let P = (r1, . . . , rℓ) be a partition of n, with r1 ≥ r2 ≥ · · · ≥ rℓ ≥ 1, and call ℓ the
length of P. Define N(P) to be the order of the subgroup of the permutation group
Sℓ which fixes P. Here Sℓ acts on Rℓ by permuting the coordinates. For example, for
P = (4, 4, 2, 2, 2, 1, 1, 1) we have N(P) = (2!)(3!)2 = 72.

Theorem 1 Let F : (Cn, 0) → (Cn, 0) be a corank-1 weighted-homogeneous A-finite
map-germ, with weights and degrees as above. For any stabilization of F , and any
partition P of n,

#AP(F ) =
wn−1

0

N(P)w

n+ℓ−1∏

j=1

(
d

w0
− j

)
,

where ℓ is the length of P, and N(P) is defined above.

Example 2 Let F : C3 → C3 be defined by

F (x1, x2, y) = (x1, x2, y
6 + x1y

2 + x2y).

This map is weighted homogeneous, with weights and degrees given by (w1, w2, w0) =
(4, 5, 1) and d = 6, so that d

w0
= 6, and w = w1w2 = 20.

As already described above, the three types of zero-schemes that occur stably in
dimension 3 are given by the partitions P = (3) (a swallowtail point), P = (2, 1) (a
cusp-fold point) and P = (1, 1, 1) (a triple fold point). The number of each of these
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occurring in a stabilization of F can be found from the formula of Theorem 1:

#A(3) =
1

1 × 20
(6 − 1)(6 − 2)(6 − 3) = 3

#A(2,1) =
1

1 × 20
(6 − 1) · · · (6 − 4) = 6

#A(1,1,1) =
1

6 × 20
(6 − 1) · · · (6 − 5) = 1,

as claimed earlier.

If the map-germ F is not weighted homogeneous, but is still A-finite, then the
multiplicities #AP can be computed as the dimensions of certain local algebras, see
Corollary 5 and Example 8 below.

1 The AP schemes

Associated to X = Cn−1 × C and a partition P of n we will be considering various
spaces. In particular,

Xℓ = Cn−1 × Cℓ,

Xℓ = Cn−1 × Cℓ+n,

where ℓ = length(P). The first of these spaces is used in this section, while the second
is used in §2. We will also be considering a versal deformation F̃ of F , with base Cd,
and then we denote X̃ℓ = Cd × Xℓ, and similarly X̃ℓ = Cd × Xℓ.

Let F̃ : X̃ → Ỹ be an Ae-versal unfolding of F (with base Cd), so that

F̃ (u, x, y) = (u, x, f̃(x, y, u)) = (u, F̃u(x, y)).

Any stabilization Fε of F can be induced from the versal deformation F̃ , so from
now on we consider only this versal deformation.

For each partition P = (r1, . . . , rℓ) of n we consider (following ideas of Gaffney
[5]) the subscheme Ṽ (P) of X̃ℓ := Cd × Cn−1 × Cℓ, defined by

Ṽ (P) := clos





(u, x, y1, . . . , yℓ) ∈ X̃ℓ

∣∣∣

• yi 6= yj ,

• F̃ (u, x, yi) = F̃ (u, x, yj), and

• F̃u has a singularity of type Arj

at (u, x, yj)





,

where ‘clos’ means the analytic closure in X̃ℓ.
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Let π = πP : Ṽ (P) → Cd be the restriction to Ṽ (P) of the Cartesian projection
X̃ℓ → Cd. For generic u ∈ Cd, the fibre π−1(u) consists of those ‘multi-points’ (also
known as ‘sets’) where F̃u has an AP multi-germ. We are thus interested in the degree
of πP .

Proposition 3 If P = (r1, . . . , rℓ) is a partition of n, then

#AP =
1

N(P)
degree(π(P)).

Proof Let y = (y1, . . . , yℓ) ∈ Ṽ (P) and σ ∈ Sℓ. We have

yσ := (yσ(1), . . . , yσ(ℓ)) ∈ Ṽ (P)

if and only if rσ(j) = rj for each j = 1, . . . , ℓ. There are N(P) such σ. The points
y and yσ are distinct, but the corresponding sets {y1, . . . , yℓ} are the same, and it is
the sets that are counted in #AP . 2

Let Ĩ(P) be the ideal in O
X̃ℓ

defining Ṽ (P), and put

I(P) = (Ĩ(P) + 〈u1, . . . , ud〉)/ 〈u1, . . . , ud〉 ⊂ OXℓ
,

corresponding to the intersection of Ṽ (P) with {0} × Xℓ = Xℓ. The main theorem
follows from the remaining two propositions of this section.

It follows from the definition of Ĩ(P), that at generic points of Ṽ (P) (i.e. where
yi 6= yj),

Ĩ(P) =
〈
(∂yf̃)1, . . . , (∂

r1

y f̃)1, . . . , (∂yf̃)ℓ, . . . , (∂
rℓ
y f̃)ℓ

〉
+

〈
f̃1 − f̃2, . . . , f̃1 − f̃ℓ

〉
, (3)

where f̃k denotes f̃ evaluated at (u, x, yk), for 1 ≤ k ≤ ℓ, and (∂i
yf̃)k denotes the ith

partial derivative of f̃ with respect to y at the point (u, x, yk), for 1 ≤ k ≤ ℓ and
1 ≤ i ≤ rk.

Proposition 4 Suppose Ṽ (P) is non-empty. (a) Ṽ (P) is smooth of dimension d;
(b) π(P) : Ṽ (P) → Cd is finite and π−1(π(0)) = {0};
(c) the degree of π(P) coincides with dimC OXℓ

/I(P).

It follows from this proposition that the ideal I(P) is a complete intersection.

Proof (a) Since F̃ is versal, it follows a fortiori that it is a stable map, and then
part (a) follows immediately from [9, Proposition 2.13].

(b) The projection πP : Ṽ (P) → Cd is a finite mapping. In fact, for a generic
u ∈ Cd, the fibre π−1(u) is finite and consists of those ‘multi-points’ where F̃u has an
AP multi-germ. The germ F̃0 = F is A-finite. So, by the Mather-Gaffney geometric
criterion ([4] or [17, Theorem 2.1]), it is stable away from zero. Thus, π−1(π(0)) = {0}.
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(c) Since Ṽ (P) is smooth and hence is Cohen-Macaulay at zero, the degree of πP

coincides with dimC OXℓ
/I(P) [8, Prop. 5.12]. 2

Note that combining Propositions 3 and 4(c) gives a method for computing the
multiplicities even in the case that F is not weighted homogeneous, provided we can
compute I(P):

Corollary 5

#AP =
1

N(P)
dimC

(
OXℓ

I(P)

)
.

In Section 2 we show how to compute I(P) and we give an example of how this
applies. We also prove the following, which combined with the corollary above, proves
Theorem 1.

Proposition 6 If F is weighted homogeneous, with weights and degree as in (2), then

dimC

(
OXℓ

I(P)

)
=

1

wℓ
0w

n+ℓ−1∏

j=1

(d − jw0).

2 Multiple point schemes

Nearby the (Ar1
+ · · · + Arℓ

) = A(r1,...,rℓ) multi-germs, there are points in the target
with (r1+1)+(r2+1)+· · ·+(rℓ+1) = (n+ℓ) preimages. We shall follow D. Mond [14]
and define an (n + ℓ)-tuple scheme in Xℓ = Cn−1 × Cn+ℓ, which on the appropriate
diagonal specializes to the ideal defining A(r1,...,rℓ) multi-germs (Proposition 7 below).

As usual, given a corank-1 map-germ F : Cn → Cn we choose linearly adapted
coordinates on Cn so that F (x, y) = (x, f(x, y)) as in (1). Having chosen such coor-
dinates on Cn, we denote the coordinates of Xℓ by

(x,y) = (x, y0
1, . . . , y

r1

1 , y0
2, . . . , y

r2

2 , . . . , y0
ℓ , . . . , y

rℓ

ℓ ).

We define an ideal J (f,P) ⊂ OXℓ by

J (f,P) = 〈hi | i = 1, . . . , n + ℓ − 1〉 ,

with

hi = V −1.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y0
1 · · · (y0

1)
i−1 f0

1 (y0
1)

i+1 · · · (y0
1)

n+l−1

...
...

...
...

...
...

1 yr1

1 · · · (yr1

1 )i−1 f r1

1 (yr1

1 )i+1 · · · (yr1

1 )n+l−1

...
...

...
...

...
...

1 y0
ℓ · · · (y0

ℓ )
i−1 f0

ℓ (y0
ℓ )

i+1 · · · (y0
ℓ )

n+l−1

...
...

...
...

...
...

1 yrℓ

ℓ · · · (yrℓ

ℓ )i−1 f rℓ

ℓ (yrℓ

ℓ )i+1 · · · (yrℓ

ℓ )n+l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where V = V (y0
1, · · · , y

r1

1 , · · · , y0
ℓ , · · · , y

rℓ

ℓ ) is the Vandermonde determinant and

f i
k = f(x, yi

k).

It follows from Cramer’s rule that the ideal J (f,P) defines the set of points in Xℓ

where all the f i
k coincide [14]. (Note that in the hi some superscripts are indices,

while others represent powers!)
For the versal deformation F̃ , one defines the ideal J (f̃ ,P) in OX̃ℓ in exactly the

same way, with f̃ i
k = f̃(u, x, yi

k).
In Xℓ there is a diagonal of particular interest, namely,

∆(P) = {(x,y) ∈ Xℓ | yi
k = yj

k, ∀i, j = 1, . . . , rk, ∀k = 1, . . . , ℓ},

which can be parametrized in the obvious way by (x, y1, . . . , yℓ):

(x,y) = (x, y1, . . . , y1, y2, . . . , y2, . . . , yℓ, . . . , yℓ), (4)

with yi occurring ri + 1 times. This corresponds to an embedding jℓ of Xℓ into Xℓ.
Of course, there is a similar embedding of X̃ℓ in X̃ℓ. A generic point of ∆(P) is one
of the form (4) with yi 6= yj , for i 6= j. We often simply write ∆ in place of ∆(P).

Let I∆(P) be the ideal defining ∆(P), that is

I∆(P) =
〈
yi

k − y0
k, | i = 1, . . . , rk, k = 1, . . . , ℓ

〉
,

and let J∆(f,P) be the OXℓ ideal defined by

J∆(f,P) = J (f,P) + I∆(P).

It was shown in [9] that at a generic point of V (J∆(f,P)), f has a singularity of type
Arj

at (x, yj), and f(x, y1) = . . . = f(x, yl) (see proof of Proposition 7(c) below).

Proposition 7 (a) The ideal J (f̃ ,P) is reduced, and the multiple point variety
V (J (f̃ ,P)) ⊂ X̃ℓ is smooth of dimension d + n (or is empty);
(b) J∆(f,P) is a complete intersection singularity;
(c) Let jℓ : Xℓ →֒ Xℓ be the embedding with image ∆(P) given in (4). Then the
surjection j∗ℓ : OXℓ → OXℓ

satisfies j∗ℓ (J∆(f,P)) = I(P) and consequently induces
an isomorphism

j∗ℓ :
OXℓ

J∆(f,P)
≃

−→
OXℓ

I(P)
.

Proof (a) The dimension is clear: for each value of (u, x, Y ) in the target there
are finitely many points (u, x, y) which map to this under F̃ . The smoothness is less
obvious, but follows from [9].
(b) The ideals 〈u1, . . . , ud〉 and I∆ have d and n generators respectively, and the
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intersection of V (J (f,P)) with the diagonal ∆(P) is reduced to a single point (the
origin) so that for dimensional reasons the ideal is a complete intersection.
(c) It is proved in [9, Lemma 2.7] that at generic points of ∆(P) one has,

J∆(f,P) =
〈
(∂yf)1, . . . , (∂

r1

y f)1, . . . , (∂yf)ℓ, . . . , (∂
rℓ
y f)ℓ

〉

+ 〈f(x, yi) − f(x, y1); 2 ≤ i ≤ ℓ〉 + I∆(P),

where the (∂i
yf)k are as in (3). It follows that generically j∗ℓJ∆(f,P) = I(P). Part (c)

then follows from the fact that two reduced complete intersection ideals that coincide
generically are in fact the same. 2

Proof of Proposition 6 According to Proposition 7(c) it is enough to compute
dim(OXℓ/J∆(f,P)), and if f is weighted homogeneous this last can be computed by
Bezout’s theorem [12] since J∆(f,P) is a complete intersection.

The generators of J∆(f,P) are the hj and the yi
k−y0

k. For each j = 1, . . . , n+ℓ−1
one has

degree(hj) = d − jw0,

while the other generators have degree w0. The product of all the degrees of the
generators is therefore 


n+ℓ−1∏

j=1

(d − jw0)


 wn

0 .

Since J∆(f,P) is a weighted homogeneous complete intersection (Proposition 7(b)),
we can apply Bezout’s theorem [12], whence its colength is

1

wℓ+n
0 w




n+ℓ−1∏

j=1

(d − jw0)


 wn

0 =
1

wℓ
0w

n+ℓ−1∏

j=1

(d − jw0),

as required. 2

Example 8 Let f : C3 → C3 be the non-weighted-homogeneous map-germ given by

f(x1, x2, y) = (x1, x2, y
5 + x1y + x2

2y2 + x2y
3).

(this is denoted 52 in the classification in [10]: note that this is not equivalent to
a weighted-homogeneous map since the discriminant Milnor number and the Ae-
codimension do not coincide [2]).

Using Maple (see the Appendix below for the programme) we computed the three
ideals I(P) for the three possible partitions. First we computed J (f,P), then sub-
stituted I∆. By Proposition 7 this gives I(P), and one then deduces the multiplicity
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from Corollary 5. The results are

I((2, 1)) =
〈
−3 y2

1y
2
2 − 2 y3

2y1 + x1, 3 y2
1y2 + 6 y2

2y1 + y3
2 + x2

2,

−y2
1 − 6 y1y2 − 3 y2

2 + x2, 2 y1 + 3 y2

〉

I((3)) =
〈
15 y4

1 + x1, −20 y3
1 + x2

2, 10 y2
1 + x2

〉

I((1, 1, 1)) = 〈1〉 .

It follows that

#A(2,1) = 3

#A(3) = 3

#A(1,1,1) = 0.

Note that #A(3) is given in [10], but the values of the other two invariants are new.
Applying Theorem 1 or the method above to the corank-1 simple germs classified

by Marar and Tari [10] enables us to ‘complete’ their Table 1 by giving the new
invariants #A(1,2) and #A(1,1,1). It turns out that these are all zero, except for
#A(1,2)(5k) for k = 1, 2, 3. The results are:

#A(1,2)(51) = 2, #A(1,2)(52) = #A(1,2)(53) = 3.

In particular, all the simple germs f : (C3, 0) → (C3, 0) satisfy #A(1,1,1)(f) = 0.

3 Multiplicities of strata in generalized swallowtails

In this final section, we use Theorem 1 to give a simple formula for the local multi-
plicity of the closure of each stratum in the discriminant of an isolated Ak singularity.

Consider the stable Ak map F : Ck → Ck,

F (x1, . . . , xk−1, y) = (X1, . . . , Xk−1, Y ) = (x1, . . . , xk−1, y
k+1 +x1y

k−1 + · · ·+xk−1y).

This map is clearly weighted homogeneous, with weights wt(xi) = wt(Xi) = i + 1,
wt(y) = 1 and wt(Y ) = k + 1. The discriminant ∆(F ) is stratified by the various
AP multi-germs, where P = (r1, . . . , rℓ) is a partition of any n ≤ k + 1 − ℓ. Denote
this stratum by ∆P and its closure by ZP . ZP is an algebraic subvariety of Ck of
dimension D = k − n.

Note that if n > k + 1 − ℓ then ∆P is empty, as observed by Goryunov [7, §4.3].
Indeed, close to ∆P there are points with at least

∑
i(ri + 1) = (n + ℓ) preimages;

however F has multiplicity k + 1 so that n + ℓ ≤ k + 1 (Goryunov’s D(µ1, . . . , µk)
corresponds to our ∆P for P = (µ1 + 1, . . . , µk + 1)).
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Theorem 9 The multiplicity of ZP at the origin is given by,

1

N(P)
(D + 1)D(D − 1) . . . (D − ℓ + 2),

where D = dim(ZP) and N(P) is defined in the introduction.

To prove this, we first need a lemma on the geometric structure of Ak discrimi-
nants.

Lemma 10 Let ZP be as above, and let (zi) be any sequence of points in ZP con-
verging to 0. Then

T0ZP := lim
i→∞

Tzi
ZP = {(X, Y ) | Xk−n+1 = Xk−n+2 = · · · = Xk−1 = Y = 0}.

Proof As is well-known and easy to see, the discriminant of F coincides with
the discriminant of the orbit map σ0 : Ck

s → Ck
t for the action of the permutation

group Sk+1, where Ck
s is identified with the subspace of Ck+1 the sum of whose

coordinates vanishes, and Sk+1 acts on Ck+1 by permuting the coordinates. Consider
the extension σ of σ0 to Ck+1 defined as usual by,

σ : Ck+1 −→ Ck+1

(y1, . . . , yk+1) 7→ (
∑

i

yi,
∑

i<j

yiyj , . . . , y1 . . . yk+1).

Clearly, Ck
t is to be identified with the subspace of Ck+1 with vanishing first coordi-

nate. It will be more convenient for computations to change coordinates in the target
of σ so that σ takes the form

σ̃(y1, . . . , yk+1) = (
∑

i

yi,
∑

i

y2
i ,

∑

i

y3
i , . . . ,

∑

i

yk+1
i ).

Note that the linear subspaces of the form T0ZP are preserved by the differential at
the origin of this change of coordinates; indeed this differential is a diagonal matrix.

Denote by ∆̃ the discriminant of σ̃.
Given the partition P = (r1, . . . , rℓ) of n, the stratum ∆̃P is the image under σ̃

of ΣP ⊂ Ck+1. Let D + 1 = dim(∆̃P) (so D = dim(ZP) as in the theorem). It is
convenient to extend P by D + 1 − ℓ zeros, so that rj = 0 for j = ℓ + 1, . . . , D + 1.
The stratum ΣP ⊂ Ck+1 is parametrized by

(y1, . . . , yD+1) 7→ (y1, . . . , y1, y2, . . . , y2, . . . , yℓ, . . . , yℓ, yℓ+1, . . . , yD+1),

where yj occurs with multiplicity rj + 1, and the yj are distinct.
Write σ̃P for the restriction of σ̃ to ΣP . Using this parametrization of ΣP , σ̃P has

the form,

σ̃P(y1, . . . , yD+1) = (
∑

i

(ri + 1)yi,
∑

i

(ri + 1)y2
i , . . . ,

∑

i

(ri + 1)yk+1
i ).

11



Thus, at a point y ∈ ΣP , the differential of σ̃P is

dσ̃P(y) =




r1 + 1 · · · rD+1 + 1
2(r1 + 1)y1 · · · 2(rD+1 + 1)yD+1

...
...

(k + 1)(r1 + 1)yk
1 · · · (k + 1)(rD+1 + 1)yk

D+1


 .

Notice that the top (D + 1) × (D + 1) minor is equal to

(D + 1)!
(∏

(ri + 1)
)

V (y1, . . . , yD+1),

where V is the Vandermonde determinant, which is non-vanishing on ∆̃P . Conse-
quently, at points of ∆̃P , the tangent space to ∆̃P projects isomorphically onto CD+1

(defined by the vanishing of the last k − D coordinates).
Finally, since σ̃ is weighted-homogeneous, and the last k − D components are of

strictly higher degree than the first D + 1, it follows that in the limit as

(y1, . . . , yD+1) → (0, . . . , 0),

the tangent space to ∆̃P tends to CD+1. Intersecting source and target with Ck
s and

Ck
t respectively shows that the same is true of the tangent space to ∆P , as required.

2

Proof of Theorem 9 It follows from this lemma that the multiplicity at 0 of ZP

is given by the intersection multiplicity of ZP with the n-dimensional subspace

{(X, Y ) | X1 = · · · = Xk−n = 0},

which is complementary to the unique limiting tangent space T0ZP , and it remains
for us to compute this multiplicity.

To this end, consider the map g : Cn → Cn defined by

g(u1, . . . , un−1, y) = (u1, . . . , un−1, y
k+1 + u1y

n−1 + · · · + un−1y),

which is induced from F by the immersion γ : Cn → Ck,

γ(u1, . . . , un−1, y) = (0, . . . , 0, u1, . . . , un−1, y),

in the sense that F ◦ γ = γ ◦ g.
By the lemma, this inclusion is transverse to ∆(F ) away from the origin, so

that it is K∆(F )-finite, and consequently, g is A-finite (Damon [1]). Moreover, a
stabilization gε of g is obtained by perturbing the embedding γ to an embedding γε

transverse to ∆(F ), and a fortiori transverse to ZP . If γε is transverse to ZP , then
image(γε) ∩ ZP = image(γε) ∩ ∆P is a finite set (for dimensional reasons).

The points of this intersection are precisely the image under γε of the points in
Cn (the image of gε) over which gε has an AP singularity. Since g is weighted ho-
mogeneous, the number of such points is given by Theorem 1. A simple computation
then proves Theorem 9. 2
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Appendix: A Maple Programme

The Maple programme used for computing I(P) is short and simple, so can be
included here. It runs (at least) on MapleV Release 4.

> restart;

> with(linalg);

Define function f , and partition P:

> f := y^5 + x[1]*y + x[2]^2*y^2 + x[2]*y^3 ;

> P := [1,2];

Find dimension of space and length of partition and check that P is indeed a partition
of n:

> n := nops(indets(f));

> ell := nops(P);

> if convert(P,‘+‘) <> n

> then print(‘ERROR, P should be a partition of n‘)

> fi;

A trick to get indices for the multiple point scheme:

> Y := array(1..ell,0..max(op(P)));

> YY := [seq(seq(Y[i,j],j=0..P[i]),i=1..ell)];

> V:=factor(det(vandermonde(YY)));

Define the generators hi of the multiple point scheme:

> h := proc(i::integer)

> local W, j;

> W := vandermonde(YY);

> for j to nops(YY) do

> W[j,i+1] := subs(y=YY[j], f)

> od;

> simplify(factor(det(W))/V)

> end;

The ideal J (f,P):

> J := [seq(h(i), i=1..n+ell-1)]:

Equations for the diagonal ∆(P ):

> Delta := {seq( seq(Y[i,j]=y[i], j=0..P[i]), i=1..ell)};

Now compute J∆, restricted to ∆ — in other words I(P) :

> IP := subs(Delta, J);
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