6 research outputs found
Voice Activity Detection Using Fuzzy Entropy and Support Vector Machine
This paper proposes support vector machine (SVM) based voice activity detection using FuzzyEn to improve detection performance under noisy conditions. The proposed voice activity detection (VAD) uses fuzzy entropy (FuzzyEn) as a feature extracted from noise-reduced speech signals to train an SVM model for speech/non-speech classification. The proposed VAD method was tested by conducting various experiments by adding real background noises of different signal-to-noise ratios (SNR) ranging from −10 dB to 10 dB to actual speech signals collected from the TIMIT database. The analysis proves that FuzzyEn feature shows better results in discriminating noise and corrupted noisy speech. The efficacy of the SVM classifier was validated using 10-fold cross validation. Furthermore, the results obtained by the proposed method was compared with those of previous standardized VAD algorithms as well as recently developed methods. Performance comparison suggests that the proposed method is proven to be more efficient in detecting speech under various noisy environments with an accuracy of 93.29%, and the FuzzyEn feature detects speech efficiently even at low SNR levels
Microcalcification Segmentation from Mammograms: A Morphological Approach
This publication presents a computer method for segmenting microcalcifications in mammograms. It makes use of morphological transformations and is composed of two parts. The first part detects microcalcifications morphologically, thus allowing the approximate area of their occurrence to be determined, the contrast to be improved, and noise to be reduced in the mammograms. In the second part, a watershed segmentation of microcalcifications is carried out. This study was carried out on a test set containing 200 ROIs 512 × 512 pixels in size, taken from mammograms from the Digital Database for Screening Mammography (DDSM), including 100 cases showing malignant lesions and 100 cases showing benign ones. The experiments carried out yielded the following average values of the measured indices: 80.5% (similarity index), 75.7% (overlap fraction), 70.8% (overlap value), and 19.8% (extra fraction). The average time of executing all steps of the methods used for a single ROI amounted to 0.83 s