173 research outputs found
Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations
Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval
Storm/Quiet Ratio Comparisons Between TIMED/SABER NO (sup +)(v) Volume Emission Rates and Incoherent Scatter Radar Electron Densities at E-Region Altitudes
Broadband infrared limb emission at 4.3 microns is measured by the TIMED/SABER instrument. At night, these emission observations at E-region altitudes are used to derive the so called NO+(v) Volume Emission Rate (VER). NO+(v) VER can be derived by removing the background CO2(v3) 4.3 microns radiance contribution using SABER-based non-LTE radiation transfer models, and by performing a standard Abel inversion on the residual radiance. SABER observations show that NO+(v) VER is significantly enhanced during magnetic storms in accordance with increased ionization of the neutral atmosphere by auroral electron precipitation, followed by vibrational excitation of NO+ (i.e., NO+(v)) from fast exothermic ion-neutral reactions, and prompt infrared emission at 4.3 m. Due to charge neutrality, the NO+(v) VER enhancements are highly correlated with electron density enhancements, as observed for example by Incoherent Scatter Radar (ISR). In order to characterize the response of the storm-time E-region from both SABER and ISR measurements, a Storm/Quiet ratio (SQR) quantity is defined as a function of altitude. For SABER, the SQR is the ratio of the storm-to-quiet NO+(v) VER. SQR is the storm-to-quiet ratio of electron densities for ISR. In this work, we compare SABER and ISR SQR values between 100 to 120 km. Results indicate good agreement between these measurements. SQR values are intended to be used as a correction factor to be included in an empirical storm-time correction to the International Reference Ionosphere model at E-region altitudes
Empirical STORM-E Model
Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presente
Far-IR Measurements at Cerro Toco, Chile: FIRST, REFIR, and AERI
In mid-2009, the Radiative Heating in the Underexplored Bands Campaign II (RHUBC-II) was conducted from Cerro Toco, Chile, a high, dry, remote mountain plateau, 23degS , 67.8degW at 5.4km, in the Atacama Desert of Northern Chile. From this site, dominant IR water vapor absorption bands and continuum, saturated when viewed from the surface at lower altitudes, or in less dry locales, were investigated in detail, elucidating IR absorption and emission in the atmosphere. Three FTIR instruments were at the site, the Far-Infrared Spectroscopy of the Troposphere (FIRST), the Radiation Explorer in the Far Infrared (REFIR), and the Atmospheric Emitted Radiance Interferometer (AERI). In a side-by-side comparison, these measured atmospheric downwelling radiation, with overlapping spectral coverage from 5 to100um (2000 to 100/cm), and instrument spectral resolutions from 0.5 to 0.64/cm, unapodized. In addition to the FTIR and other ground-based IR and microwave instrumentation, pressure/temperature/relative humidity measuring sondes, for atmospheric profiles to 18km, were launched from the site several times a day. The derived water vapor profiles, determined at times matching the FTIR measurement times, were used to model atmospheric radiative transfer. Comparison of instrument data, all at the same spectral resolution, and model calculations, are presented along with a technique for determining adjustments to line-by-line calculation continuum models. This was a major objective of the campaign
Far-Infrared Blocked Impurity Band Detector Development
DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress
Troposphere-Thermosphere Tidal Coupling as Measured by the SABER Instrument on TIMED during July-September, 2002
Coupling between the troposphere and lower thermosphere due to upward-propagating tides is investigated using temperatures measured from the SABER instrument on the TIMED satellite. The data analyzed here are confined to 20-120 km altitude and +/-40 deg latitude during 20 July 20 September, 2002. Apart from the migrating (sun-synchronous) tidal components, the predominant feature seen (from the satellite frame) during this period is a wave-4 structure in longitude with extrema of up to +/-40-50 K at 110 km. Amplitudes and longitudes of maxima of this structure evolve as the satellite precesses in local time, and as the wave(s) responsible for this structure vary with time. The primary wave responsible for the wave-4 pattern is the eastward-propagating diurnal tide with zonal wavenumber s=3 (DE3). Its average amplitude distribution over the interval is quasi-symmetric about the equator, similar to that of a Kelvin wave, with maximum of about 20 K at 5 deg S and 110 km. DE3 is primarily excited by latent heating due to deep tropical convection in the troposphere. It is demonstrated that existence of DE3 is intimately connected with the predominant wave-4 longitude distribution of topography and land-sea difference at low latitudes, and an analogy is drawn with the strong presence of DE1 in Mars atmosphere, the predominant wave-2 topography on Mars, and the wave-2 patterns that dominate density measurements from the Mars Global Surveyor (MGS) spacecraft near 130 km. Additional diurnal, semidiurnal and terdiurnal nonmigrating tides are also revealed in the present study. These tidal components are most likely excited by nonlinear interactions between their migrating counterparts and the stationary planetary wave with s=1 known to exist in the Southern Hemisphere during this period just prior to the austral mid-winter stratospheric warming of 2002
A Multi-Instrument Measurement of a Mesospheric Bore at the Equator
We have made a comprehensive measurement of mesospheric bore phenomenon at the equator at Kototabang, Indonesia (0.2 deg S, 100.3 deg E), using an airglow imager, an airglow temperature photometer, a meteor radar, and the SABER instrument on board the TIMED satellite. The bore was detected in airglow images of both OH-band (peak emission altitude: 87 km) and 557.7-nm (96 km) emissions, as east-west front-like structure propagating northward with a velocity of 52-58 m/s. Wave trains with a horizontal wavelength of 30-70 km are observed behind the bore front. The airglow intensity decreases for all the mesospheric emissions of OI (557.7 nm), OH-band, O2-band (altitude: 94 km), and Na (589.3 nm) (90 km) after the bore passage. The rotational temperatures of both OH-band and O2-band also decrease approximately 10 K after the bore passage. An intense shear in northward wind velocity of 80m/s was observed at altitudes of 84-90 km by the meteor radar. Kinetic temperature profile at altitudes of 20-120 km was observed near Kototabang by TIMED/SABER. On the basis of these observations, we discuss generation and ducting of the observed mesospheric bore
Global Distribution of CO2 VMR in the Mesosphere and Lower Thermosphere and Long-Term Changes Observed by SABER
No abstract availabl
- …