214 research outputs found

    Is there a Gender Gap in Fiscal Political Preferences?

    Get PDF
    This paper examines the relationship between attitudes on potential uses of the budget surplus and gender. Survey results show relatively weak support overall for using a projected surplus to reduce taxes, with respondents much likelier to prefer increased social spending on education or social security. There is a significant gender gap with men being far more likely than women to support tax cuts or paying down the national debt. Given a menu of particular types of tax cuts, women are marginally more likely to favor childcare relief or working poor tax credits whereas men are marginally more likely to favor capital gains reduction or tax rate cuts. When primed that the tax laws are biased against two-worker families, men significantly change their preferences, moving from support for general tax rate cuts to support for working poor tax relief, but not to child-care relief. One of the strongest results to emerge is that women are far more likely than men not to express an opinion or to confess ignorance about fiscal matters. Both genders increase their “no opinion" answer in the face of priming, but men more so than women. Further research will explore this no opinion/uncertainty aspect

    Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast

    Get PDF
    Ergosterol depletion independently inhibits two aspects of yeast mating: pheromone signaling and plasma membrane fusion. In signaling, ergosterol participates in the recruitment of Ste5 to a polarized site on the plasma membrane. Ergosterol is thought to form microdomains within the membrane by interacting with the long acyl chains of sphingolipids. We find that although sphingolipid-free ergosterol is concentrated at sites of cell–cell contact, transmission of the pheromone signal at contact sites depends on a balanced ratio of ergosterol to sphingolipids. If a mating pair forms between ergosterol-depleted cells despite the attenuated pheromone response, the subsequent process of membrane fusion is retarded. Prm1 also participates in membrane fusion. However, ergosterol and Prm1 have independent functions and only prm1 mutant mating pairs are susceptible to contact-dependent lysis. In contrast to signaling, plasma membrane fusion is relatively insensitive to sphingolipid depletion. Thus, the sphingolipid-free pool of ergosterol promotes plasma membrane fusion

    Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics

    Get PDF
    Many pathological states involve dysregulation of mitochondrial fusion, fission, or transport. These dynamic events are usually studied in cells lines because of the challenges in tracking mitochondria in tissues. To investigate mitochondrial dynamics in tissues and disease models, we generated two mouse lines withphoto-activatable mitochondria (PhAM). In the PhAM ^(floxed) line, a mitochondrially localized version of the photo-convertible fluorescent protein Dendra2 (mito-Dendra2) is targeted to the ubiquitously expressed Rosa26 locus, along with an upstream loxP-flanked termination signal. Expression of Cre in PhAM ^(floxed) cells results in bright mito-Dendra2 fluorescence without adverse effects on mitochondrial morphology. When crossed with Cre drivers, the PhAM ^(floxed) line expresses mito-Dendra2 in specific cell types, allowing mitochondria to be tracked even in tissues that have high cell density. In a second line (PhAM ^(excised)), the expression of mito-Dendra2 is ubiquitous, allowing mitochondria to be analyzed in a wide range of live and fixed tissues. By using photo-conversion techniques, we directly measured mitochondrial fusion events in cultured cells as well as tissues such as skeletal muscle. These mouse lines facilitate analysis of mitochondrial dynamics in a wide spectrum of primary cells and tissues, and can be used to examine mitochondria in developmental transitions and disease states

    Mitofusins and OPA1 Mediate Sequential Steps in Mitochondrial Membrane Fusion

    Get PDF
    Mitochondrial fusion requires the coordinated fusion of the outer and inner membranes. Three large GTPases—OPA1 and the mitofusins Mfn1 and Mfn2—are essential for the fusion of mammalian mitochondria. OPA1 is mutated in dominant optic atrophy, a neurodegenerative disease of the optic nerve. In yeast, the OPA1 ortholog Mgm1 is required for inner membrane fusion in vitro; nevertheless, yeast lacking Mgm1 show neither outer nor inner membrane fusion in vivo, because of the tight coupling between these two processes. We find that outer membrane fusion can be readily visualized in OPA1-null mouse cells in vivo, but these events do not progress to inner membrane fusion. Similar defects are found in cells lacking prohibitins, which are required for proper OPA1 processing. In contrast, double Mfn-null cells show neither outer nor inner membrane fusion. Mitochondria in OPA1-null cells often contain multiple matrix compartments bounded together by a single outer membrane, consistent with uncoupling of outer versus inner membrane fusion. In addition, unlike mitofusins and yeast Mgm1, OPA1 is not required on adjacent mitochondria to mediate membrane fusion. These results indicate that mammalian mitofusins and OPA1 mediate distinct sequential fusion steps that are readily uncoupled, in contrast to the situation in yeast

    Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins

    Get PDF
    None of the 28 identified point mutations in tafazzin (Taz1p), which is the mutant gene product associated with Barth syndrome (BTHS), has a biochemical explanation. In this study, endogenous Taz1p was localized to mitochondria in association with both the inner and outer mitochondrial membranes facing the intermembrane space (IMS). Unexpectedly, Taz1p does not contain transmembrane (TM) segments. Instead, Taz1p membrane association involves a segment that integrates into, but not through, the membrane bilayer. Residues 215–232, which were predicted to be a TM domain, were identified as the interfacial membrane anchor by modeling four distinct BTHS mutations that occur at conserved residues within this segment. Each Taz1p mutant exhibits altered membrane association and is nonfunctional. However, the basis for Taz1p dysfunction falls into the following two categories: (1) mistargeting to the mitochondrial matrix or (2) correct localization associated with aberrant complex assembly. Thus, BTHS can be caused by mutations that alter Taz1p sorting and assembly within the mitochondrion, indicating that the lipid target of Taz1p is resident to IMS-facing leaflets

    The Ran GTPase cycle is required for yeast nuclear pore complex assembly

    Get PDF
    Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase–activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes

    Gender and Tax

    Get PDF
    It is well known that there is a gender gap in American politics: that men and women in the aggregate vote differently for presidential candidates, for example. The precise determinants of the gap are less well known. Using existing data, mainly 1996 general election exit polls, this article explores the gender gap in relation to tax issues. It finds that while men and women have broadly similar attitudes or "primary preferences" about tax questions, the weighing of tax as an issue -- the "secondary preferences" -- differ, with men attaching more importance to tax as an issue than women. This result suggests, inter alia, that framing of political issues matter, and that a successful candidate may appeal differentially to each gender on the basis of different policy issues

    Mitochondrial fission factor (Mff) is required for organization of the mitochondrial sheath in spermatids

    Get PDF
    Background: Mitochondrial fission counterbalances fusion to maintain organelle morphology, but its role during development remains poorly characterized. Mammalian spermatogenesis is a complex developmental process involving several drastic changes to mitochondrial shape and organization. Mitochondria are generally small and spherical in spermatogonia, elongate during meiosis, and fragment in haploid round spermatids. Near the end of spermatid maturation, small mitochondrial spheres line the axoneme, elongate, and tightly wrap around the midpiece to form the mitochondrial sheath, which is critical for fueling flagellar movements. It remains unclear how these changes in mitochondrial morphology are regulated and how they affect sperm development. Methods: We used genetic ablation of Mff (mitochondrial fission factor) in mice to investigate the role of mitochondrial fission during mammalian spermatogenesis. Results: Our analysis indicates that Mff is required for mitochondrial fragmentation in haploid round spermatids and for organizing mitochondria in the midpiece in elongating spermatids. In Mff mutant mice, round spermatids have aberrantly elongated mitochondria that often show central constrictions, suggestive of failed fission events. In elongating spermatids and spermatozoa, mitochondrial sheaths are disjointed, containing swollen mitochondria with large gaps between organelles. These mitochondrial abnormalities in Mff mutant sperm are associated with reduced respiratory chain Complex IV activity, aberrant sperm morphology and motility, and reduced fertility. Conclusions: Mff is required for organization of the mitochondrial sheath in mouse sperm. General Significance: Mitochondrial fission plays an important role in regulating mitochondrial organization during a complex developmental process
    • …
    corecore