848 research outputs found

    Spinodal Backreaction During Inflation and Initial Conditions

    Full text link
    We investigate how long wavelength inflationary fluctuations can cause the background field to deviate from classical dynamics. For generic potentials, we show that, in the Hartree approximation, the long wavelength dynamics can be encapsulated by a two-field model operating in an effective potential. The latter is given by a simple Gaussian integral transformation of the original inflationary potential. We use this new expression to study backreaction effects in quadratic, hilltop, flattened, and axion monodromy potentials. We find that the net result of the altered dynamics is to slightly modify the spectral tilt, drastically decrease the tensor-to-scalar ratio, and to effectively smooth over any features of the potential, with the size of these deviations set by the initial value of power in large scale modes and the shape of the potential during the entire evolution.Comment: 30 pages, 8 figure

    Trapping and Cooling a mirror to its quantum mechanical ground state

    Full text link
    We propose a technique aimed at cooling a harmonically oscillating mirror to its quantum mechanical ground state starting from room temperature. Our method, which involves the two-sided irradiation of the vibrating mirror inside an optical cavity, combines several advantages over the two-mirror arrangements being used currently. For comparable parameters the three-mirror configuration provides a stiffer trap for the oscillating mirror. Furthermore it prevents bistability from limiting the use of higher laser powers for mirror trapping, and also partially does so for mirror cooling. Lastly, it improves the isolation of the mirror from classical noise so that its dynamics are perturbed mostly by the vacuum fluctuations of the optical fields. These improvements are expected to bring the task of achieving ground state occupation for the mirror closer to completion.Comment: 5 pages, 1 figur

    A Linear Approximation for the Excitation Energies of single and double analog states in the f_{7/2} shell

    Full text link
    We find that the excitation energies of single analog states for odd-even nuclei in the f7/2_{7/2} shell with J=j=7/2−^{-} and the J=0+^{+} double analog states in the even-even nuclei are well described by the formulas E∗(j,T+1)=b(T+X)E^{*}(j,T+1) = b (T+X) and E∗(0+,T+2)=2b(T+X+0.5)E^{*}(0^{+},T+2) = 2b (T+X+0.5),respectively, where T=∣N−Z∣/2T=\mid N-Z\mid /2 is usually the ground state isospin. It is remarkable to note that the parameter X accounts for the departures from the symmetry energy based predictions.Comment: 8 pages and no figure

    Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror

    Full text link
    We show theoretically that it is possible to trap and cool the rotational motion of a macroscopic mirror made of a perfectly reflecting spiral phase element using orbital angular momentum transfer from a Laguerre-Gaussian optical field. This technique offers a promising route to the placement of the rotor in its quantum mechanical ground state in the presence of thermal noise. It also opens up the possibility of simultaneously cooling a vibrational mode of the same mirror. Lastly, the proposed design may serve as a sensitive torsional balance in the quantum regime.Comment: New cavity design, reworked title; to appear in Phys. Rev. Let

    Fermionic Symmetries: Extension of the two to one Relationship Between the Spectra of Even-Even and Neighbouring Odd mass Nuclei

    Full text link
    In the single j shell there is a two to one relationship between the spectra of certain even-even and neighbouring odd mass nuclei e.g. the calculated energy levels of J=0^+ states in ^{44}Ti are at twice the energies of corresponding levels in ^{43}Ti(^{43}Sc) with J=j=7/2. Here an approximate extension of the relationship is made by adopting a truncated seniority scheme i.e. for ^{46}Ti and ^{45}Sc we get the relationship if we do not allow the seniority v=4 states to mix with the v=0 and v=2 states. Better than that, we get very close to the two to one relationship if seniority v=4 states are admixed perturbatively. In addition, it is shown that the higher isospin states do not contain seniority 4 admixtures.Comment: 11 pages, RevTex file and no figures, typos added, references changed and changed content

    The Origin of Power-Law Emergent Scaling in Large Binary Networks

    Get PDF
    In this paper we study the macroscopic conduction properties of large but finite binary networks with conducting bonds. By taking a combination of a spectral and an averaging based approach we derive asymptotic formulae for the conduction in terms of the component proportions p and the total number of components N. These formulae correctly identify both the percolation limits and also the emergent power law behaviour between the percolation limits and show the interplay between the size of the network and the deviation of the proportion from the critical value of p = 1/2. The results compare excellently with a large number of numerical simulations

    Dynamic supply chain design: Square root law for bullwhip

    Get PDF

    Multi-parameter models of innovation diffusion on complex networks

    Get PDF
    A model, applicable to a range of innovation diffusion applications with a strong peer to peer component, is developed and studied, along with methods for its investigation and analysis. A particular application is to individual households deciding whether to install an energy efficiency measure in their home. The model represents these individuals as nodes on a network, each with a variable representing their current state of adoption of the innovation. The motivation to adopt is composed of three terms, representing personal preference, an average of each individual's network neighbours' states and a system average, which is a measure of the current social trend. The adoption state of a node changes if a weighted linear combination of these factors exceeds some threshold. Numerical simulations have been carried out, computing the average uptake after a sufficient number of time-steps over many realisations at a range of model parameter values, on various network topologies, including random (Erdos-Renyi), small world (Watts-Strogatz) and (Newman's) highly clustered, community-based networks. An analytical and probabilistic approach has been developed to account for the observed behaviour, which explains the results of the numerical calculations

    Degeneracies when T=0 Two Body Matrix Elements are Set Equal to Zero and Regge's 6j Symmetry Relations

    Full text link
    The effects of setting all T=0 two body interaction matrix elements equal to a constant (or zero) in shell model calculations (designated as =0=0) are investigated. Despite the apparent severity of such a procedure, one gets fairly reasonable spectra. We find that using =0=0 in single j shell calculations degeneracies appear e.g. the I=1/2−I={1/2} ^{-} and 13/2−{13/2}^{-} states in 43^{43}Sc are at the same excitation energies; likewise the I=32+3_{2}^{+},72+7_{2}^{+},91+^{+}_{1} and 101+^{+}_{1} states in 44^{44}Ti. The above degeneracies involve the vanishing of certain 6j and 9j symbols. The symmetry relations of Regge are used to explain why these vanishings are not accidental. Thus for these states the actual deviation from degeneracy are good indicators of the effects of the T=0 matrix elements. A further indicator of the effects of the T=0 interaction in an even - even nucleus is to compare the energies of states with odd angular momentum with those that are even
    • …
    corecore