780 research outputs found

    A 3D full-field study of cracks in a nuclear graphite under mode I and mode II cyclic dwell loading conditions

    Get PDF
    Three‐dimensional (3D) full‐field deformation around crack tips in a nuclear graphite has been studied under mode I and mode II cyclic dwell loading conditions using digital volume correlation (DVC) and integrated finite element (FE) analysis. A cracked Brazilian disk specimen of Gilsocarbon graphite was tested at selected loading angles to achieve mode I and mode II cyclic dwell loading conditions. Integrated FE analysis was carried out with the 3D displacement fields measured by DVC injected into the FE model, from which the crack driving force J‐integral was obtained using a damaged plasticity material model. The evolution of near‐tip strains and the J‐integral during the cyclic dwell loading was examined. Under cyclic dwell, residual strain accumulation was observed for the first time. The results shed some light on the effect of dwell time on the 3D crack deformation and crack driving force in Gilsocarbon under cyclic mode I and II loading conditions

    Micro-mechanical testing by fibre pushout of the BN interlayer in SiCf/SiC composites for aero-propulsion

    Get PDF
    Ceramic Matrix Composites (CMC’s) are finding renewed interest in the aerospace community for use as high temperature components in engines due to the potential for cooling air reductions over metallic parts, amongst other benefits such as weight saving and improving the turbine blade clearance. Quasi-brittle SiCf/SiC composites are toughened by the application of a boron nitride interphase coating to the fibre, which allows for cracks to deviate from the matrix. The principal issues faced by SiC-based composites lie in their degradation in corrosive environments (changing the interphase region and embrittling the overall composite) and their current inadequacy to adopt performance life models. Therefore, maintaining the interfacial properties of the composite at high temperatures is crucial. The extraction of these said properties has however proven itself to be a major engineering challenge in materials science. A few meso-scale and macro-scale techniques such as the transverse bend test and the Brazilian disc compression test have shown experimental reproducibility but are unsupported by sufficient modelling. The most accurate method for determining the properties at the micro-scale remains the push-out method on singular fibres. Herein the talk will present current both advances in using the fibre push-out method and some of the challenges to overcome with push-outs in order to accurately measure the interfacial shear stresses, coefficients of friction and residual compressive stresses at the fibre/matrix interface. The push-out method will be contrasted to the fibre push-back and push-in techniques and a novel \u27via\u27 push-out method will be introduced. Finally, suggestions for improving the method to corroborate with ongoing modelling work will be showcased

    An iterative method for reference pattern selection in high-resolution electron backscatter diffraction (HR-EBSD)

    Get PDF
    For high (angular) resolution electron backscatter diffraction (HR-EBSD), the selection of a reference diffraction pattern (EBSP0) significantly affects the precision of the calculated strain and rotation maps. This effect was demonstrated in plastically deformed body-centred cubic and face-centred cubic ductile metals (ferrite and austenite grains in duplex stainless steel) and brittle single-crystal silicon, which showed that the effect is not only limited to measurement magnitude but also spatial distribution. An empirical relationship was then identified between the cross-correlation parameter and angular error, which was used in an iterative algorithm to identify the optimal reference pattern that maximises the precision of HR-EBSD

    J-integral analysis: An EDXD and DIC comparative study for a fatigue crack

    Get PDF
    Synchrotron Energy Dispersive X-ray Diffraction (EDXD) and Digital Image Correlation (DIC) have been applied to map simultaneously the 2D elastic strain and displacement fields of a propagating fatigue crack in the HAZ of a welded Cr2Ni4MoV bainitic steel. The position of the crack tip was tracked via a phase congruency analysis of the displacement field, and also by detection of its cyclic plastic zone. Both types of full field data provided independent inputs to finite element/J-integral analyses that directly quantified the elastic cyclic stress intensity factor range applied to the crack. No knowledge was required of the specimen geometry, crack length or applied loads. The agreement between the two analyses in this controlled study shows that strain mapping by synchrotron EDXD can provide a reliable method to study the crack fields in more complex problems, such as interactions between crack closure, residual stresses and applied loading

    Contact processes with long-range interactions

    Full text link
    A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It is found that the transition into the absorbing state is continuous and is characterized by continuously varying critical exponents. This model differs from the previously studied non-local directed percolation model, where particles are created by unrestricted Levy flights. It is motivated by recent studies of non-equilibrium wetting indicating that this type of non-local processes play a role in the unbinding transition. Other non-local processes which have been suggested to exist within the context of wetting are considered as well.Comment: Accepted with minor revisions by Journal of Statistical Mechanics: Theory and experiment

    J-integral analysis: an EDXD and DIC comparative study for a fatigue crack

    Get PDF
    Synchrotron Energy Dispersive X-ray Diffraction (EDXD) and Digital Image Correlation (DIC) have been applied to map simultaneously the 2D elastic strain and displacement fields of a propagating fatigue crack in the HAZ of a welded Cr2Ni4MoV bainitic steel. The position of the crack tip was tracked via a phase congruency analysis of the displacement field, and also by detection of its cyclic plastic zone. Both types of full field data provided independent inputs to finite element/J-integral analyses that directly quantified the elastic cyclic stress intensity factor range applied to the crack. No knowledge was required of the specimen geometry, crack length or applied loads. The agreement between the two analyses in this controlled study shows that strain mapping by synchrotron EDXD can provide a reliable method to study the crack fields in more complex problems, such as interactions between crack closure, residual stresses and applied loading
    • 

    corecore