1,219 research outputs found
Plasma wake inhibition at the collision of two laser pulses in an underdense plasma
An electron injector concept for laser-plasma accelerator was developed in
ref [1] and [2] ; it relies on the use of counter-propagating ultrashort laser
pulses. In [2], the scheme is as follows: the pump laser pulse generates a
large amplitude laser wakefield (plasma wave). The counter-propagating
injection pulse interferes with the pump laser pulse to generate a beatwave
pattern. The ponderomotive force of the beatwave is able to inject plasma
electrons into the wakefield. We have studied this injection scheme using 1D
Particle in Cell (PIC) simulations. The simulations reveal phenomena and
important physical processes that were not taken into account in previous
models. In particular, at the collision of the laser pulses, most plasma
electrons are trapped in the beatwave pattern and cannot contribute to the
collective oscillation supporting the plasma wave. At this point, the fluid
approximation fails and the plasma wake is strongly inhibited. Consequently,
the injected charge is reduced by one order of magnitude compared to the
predictions from previous models.Comment: 4 pages, 4 figure
Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas
The interaction of two laser pulses in an underdense plasma has proven to be
able to inject electrons in plasma waves, thus providing a stable and tunable
source of electrons. Whereas previous works focused on the "beatwave" injection
scheme in which two lasers with the same polarization collide in a plasma, this
present letter studies the effect of polarization and more specifically the
interaction of two colliding cross-polarized laser pulses. It is shown both
theoretically and experimentally that electrons can also be pre-accelerated and
injected by the stochastic heating occurring at the collision of two
cross-polarized lasers and thus, a new regime of optical injection is
demonstrated. It is found that injection with cross-polarized lasers occurs at
higher laser intensities.Comment: 4 pages, 4 figure
3D printing of gas jet nozzles for laser-plasma accelerators
Recent results on laser wakefield acceleration in tailored plasma channels
have underlined the importance of controlling the density profile of the gas
target. In particular it was reported that appropriate density tailoring can
result in improved injection, acceleration and collimation of laser-accelerated
electron beams. To achieve such profiles innovative target designs are
required. For this purpose we have reviewed the usage of additive layer
manufacturing, commonly known as 3D printing, in order to produce gas jet
nozzles. Notably we have compared the performance of two industry standard
techniques, namely selective laser sintering (SLS) and stereolithography (SLA).
Furthermore we have used the common fused deposition modeling (FDM) to
reproduce basic gas jet designs and used SLA and SLS for more sophisticated
nozzle designs. The nozzles are characterized interferometrically and used for
electron acceleration experiments with the Salle Jaune terawatt laser at
Laboratoire d'Optique Appliqu\'ee
- …