79 research outputs found
Sol–Gel Synthesis of Iron-Doped Sepiolite as a Novel Humidity-Sensing Material
Nowadays, humidity sensors are attracting a great deal of attention, and there are many studies focusing on enhancing their performances. Nevertheless, their fabrication through facile methods at reasonable cost is a significant factor. In this article, a new magnesium silicate nanopowder was successfully synthesized using a simple and low-cost sol–gel method. Subsequently, modified sepiolite was achieved by the substitution of iron ions in the synthesized nanopowders. The specimens were then characterized by X-ray diffraction, field emission–scanning electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric–differential thermal analysis, infrared spectroscopy, and nitrogen adsorption. Furthermore, humidity sensors were manufactured by screen printing the prepared powders on alumina substrates with interdigitated Pt electrodes. The results showed that the fabricated sensors with modified sepiolite exhibited interesting characteristics for humidity detection
Development and mechanical characterization of novel ceramic foams fabricated by gel-casting
Porous ceramic materials are of considerable interest for a variety of chemical and industrial applications in extremely harsh conditions, particularly at very high temperatures for long time periods. A combined gel-casting-fugitive phase process employing agar as a natural gelling agent and polyethylene spheres as pore formers was exploited to produce porous ceramic bodies. Alumina and alumina–zirconia powders were used to prepare samples having a porosity of about 65–70–75 vol%. The composite powder was produced by a surface modification route, i.e. by coating a well-dispersed alpha-alumina powder with a zirconium chloride aqueous solution. On thermal treatment, ultra-fine tetragonal zirconia grains were formed on the surface of the alumina particles. SEM observations and image analysis were used to characterize the microstructure of porous samples and uniaxial compressive tests were carried out to measure their mechanical behavior
Sol–gel-entrapped pH indicator for monitoring pH variations in cementitious materials
Sensors for pH evaluation of concrete were made by a sol–gel process with alizarin yellow as pH indicator. The optical absorbance was measured with a visible spectrophotometer coupled with optical fibers. Results showed that the sensors had good reversibility, reproducibility, and fast response time
Role of natural stone wastes and minerals in the Alkali activation process: A review
This review aims to provide a comprehensive assessment concerning alkali activation of natural stone wastes and minerals. In particular, the structure of the review is divided into two main sections in which the works dealing with alumino-silicate and carbonatic stones are discussed, respectively. Alumino-silicate stones are generally composed of quartz and feldspars, while carbonatic stones are mainly made of calcite and dolomite. The role of these minerals in the alkali activation process is discussed, attesting their influence in the development of the final product properties. In most of the works, authors use mineral additions only as fillers or aggregates and, in some cases, as a partial substitution of more traditional raw powders, such as metakaolin, fly ash, and granulated blast furnace slag. However, a few works in which alumino-silicate and carbonatic stone wastes are used as the main active components are discussed as well. Not only the raw materials, but also the entire alkali activation process and the curing conditions adopted in the literature studies here reviewed are systematically analyzed to improve the understanding of their effect on the physical, mechanical, and durability properties of the final products and to eventually foster the reuse of natural stone wastes for the purposes of sustainability in different applications
Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition
The use of marble sludge as precursor for new alkali activated materials was assessed studying three different curing conditions (air, humid and water immersion, respectively), after an initial curing at 60 °C for 24 h, and two glass powder fractions additions (2.5 and 5.0 vol%). Microstructural, physical (drying shrinkage, Fourier transform-infrared (FT-IR) spectroscopy, X-ray spectroscopy (XPS)), thermal (differential thermal analysis – thermogravimetric analysis, DTA-TGA) and mechanical (flexural and compressive strength) properties were investigated. Air curing was the most favourable atmosphere for mechanical properties development because it promotes Si-O-Si polymerization and gel densification, as demonstrated by FT-IR and FE-SEM observations, respectively. Satisfactory mechanical properties were achieved (18 MPa and 45 MPa, for flexural and compressive strength, respectively) in particular for glass containing mixtures. Moreover, glass powder addition significantly reduced drying shrinkage of air-cured samples because it operated as a rigid aggregate in the matrix and strengthened the formed gel
Experimental evaluation of tensile performance of aluminate cement composite reinforced with weft knitted fabrics as a function of curing temperature
Cement composites (CC) are among the composites most widely used in the construction industry, such as a durable waterproof and fire-resistant concrete layer, slope protection, and application in retaining wall structures. The use of 3D fabric embedded in the cement media can improve the mechanical properties of the composites. The use of calcium aluminate cement (CAC) can accelerate the production process of the CC and further contribute to improving the mechanical properties of the cement media. The purpose of this study is to promote the use of these cementitious composites by deepening the knowledge of their tensile properties and investigating the factors that may affect them. Therefore, 270 specimens (three types of stitch structure, two directions of the fabric, three water temperature values, five curing ages, with three repetitions) were made, and the tensile properties, absorbed energy, and the inversion effects were evaluated. The results showed that the curing conditions of the reinforced cementitious composite in water with temperature values of 7, 23, and 50 °C affect the tensile behavior. The tensile strength of the CCs cured in water with a temperature of 23 °C had the highest tensile strength, while 7 and 50 °C produced a lower tensile strength. The inversion effect has been observed in CC at 23 °C between 7 and 28 days, while this effect has not occurred in other curing temperature values. By examining three commercial types of stitches in fabrics and the performance of the reinforced cementitious composites in the warp direction, it was found that the structure of the “Tuck Stitch” has higher tensile strength and absorbed energy compared to “Knit stitch” and “Miss Stitch”. The tensile strength and fracture energy of the CC reinforced with “Tuck Stitch” fabric in the warp direction, by curing in 23 °C water for 7 days, were found to be 2.81 MPa and 1.65 × 103 KJ/m3, respectively. These results may be helpful in selecting the design and curing parameters for the purposes of maximizing the tensile properties of textile CAC composites
sensing characteristics of hematite and barium oxide doped hematite films towards ozone and nitrogen dioxide
Abstract Hematite (α-Fe2O3) and barium oxide doped hematite (BaO-Fe 2 O 3 ) thin films were investigated as ozone (O 3 ) and nitrogen dioxide (NO 2 ) sensing materials. Fe 2 O 3 and BaO-Fe 2 O 3 films were deposited by radio- frequency sputtering using pure Fe 2 O 3 , and 1-2% BaO doped Fe 2 O 3 targets. The 700 °C (1 hour) annealed films showed significant responses to O 3 at temperatures ranging from 150 °C to 300 °C. Although, hematite is an n-type semiconductor, the Fe 2 O 3 and BaO-Fe 2 O 3 films exhibit p-type behavior to O 3 and n- type behavior to NO 2 at the studied concentration ranges in this work. The response to oxidizing gases is not strictly an increase in resistance due to a conversion from n-type to p-type depending on gas concentrations. This effect is more visible with increasing Ba concentration
Theoretical and experimental analysis of multifunctional high performance cement mortar matrices reinforced with varying lengths of carbon fibers
An effective scheme to formulate high performance and multifunctional cement based mortar composites reinforced with varying lengths of carbon fibers has been devised. The detailed investigations pertaining to the fracture response of composites in cracks initiation and progression phases, their conducting mechanism and volumetric stability were performed with varying loads of 6mm and 12mm long carbon fibers at two different w/c ratios i.e. 0.45 and 0.50. The experiments concluded that an optimum addition of carbon fibers results in substantial improvement of fracture properties alongside significant reduction in electrical resistivity and total plastic shrinkage. The field emission scanning electron microscopy of the cryofractured specimen revealed crack arresting actions of uniformly distributed carbon fibers through successful crack bridging and branching phenomenon
Robocasting of single and multi-functional calcium phosphate scaffolds and its hybridization with conventional techniques: Design, fabrication and characterization
In this work, dense, porous, and, for the first time, functionally-graded bi-layer scaffolds with a cylindrical geometry were produced from a commercially available hydroxyapatite powder using the robocasting technique. The bi-layer scaffolds were made of a dense core part attached to a surrounding porous part. Subsequently, these bi-layer robocast scaffolds were joined with an outer shell of an antibacterial porous polymer layer fabricated by solvent casting/salt leaching techniques, leading to hybrid ceramic-polymer scaffolds. The antibacterial functionality was achieved through the addition of silver ions to the polymer layer. All the robocast samples, including the bi-layer ones, were first characterized through scanning electron microscopy observations, mechanical characterization in compression and preliminary bioactivity tests. Then, the hybrid bi-layer ceramic-polymer scaffolds were characterized through antimicrobial tests. After sintering at 1300 for 3 h, the compressive strengths of the structures were found to be equal to 29 Â 4 MPa for dense samples and 7 Â 4 MPa for lattice structures with a porosity of 34.1%. Bioactivity tests performed at 37 Â for 4 weeks showed that the precipitated layer on the robocast samples contained octacalcium phosphate. Finally, it was evidenced that the hybrid structure was effective in releasing antibacterial Ag+ ions to the surrounding medium showing its potential efficiency in limiting Staphylococcus aureus proliferation during surgery
The Effect of Different Biochar on the Mechanical Properties of Cement-Pastes and Mortars
In recent years, there has been a concerning surge in CO2 emissions, with the construction and materials production sectors standing out as significant contributors to greenhouse gas pollution. To tackle this pressing environmental challenge, architectural design and civil engineering are actively pursuing strategies to mitigate their carbon footprint. These initiatives include adopting eco-friendly construction materials with reduced toxicity, rigorous energy management practices across the entire life cycle of structures, and incorporating innovative materials like biochar. Biochar is a carbon-rich byproduct generated through controlled thermochemical processes, such as pyrolysis or gasification, that stands out for its remarkable capacity to extract energy from processed biomass while delivering substantial environmental advantages. This study examines the use of biochar as a filler in cement-paste and mortar, as well as its influence on mechanical properties. In the case of cementitious pastes, results show that small amounts of biochar (1-2-5% by weight of cement) can improve the compressive and flexural strength, as well as fracture energy, thus generating a more tortuous crack path that increases the final surface area. In mortar specimens, the biochar influence does not show similar patterns or characteristics as the cement-paste in flexural and compressive strengths; nevertheless, biochar particles improve the toughness
- …