52 research outputs found

    Ultrasound and clinical preoperative characteristics for discrimination between ovarian metastatic colorectal cancer and primary ovarian cancer: A case-control study

    Get PDF
    The aim of this study was to describe the clinical and sonographic features of ovarian metastases originating from colorectal cancer (mCRC), and to discriminate mCRC from primary ovarian cancer (OC). We conducted a multi-institutional, retrospective study of consecutive patients with ovarian mCRC who had undergone ultrasound examination using the International Ovarian Tumor Analysis (IOTA) terminology, with the addition of evaluating signs of necrosis and abdominal staging. A control group included patients with primary OC. Clinical and ultrasound data, subjective assessment (SA), and an assessment of different neoplasias in the adnexa (ADNEX) model were evaluated. Fisher's exact and Student's t-tests, the area under the receiver-operating characteristic curve (AUC), and classification and regression trees (CART) were used to conduct statistical analyses. In total, 162 patients (81 with OC and 81 with ovarian mCRC) were included. None of the patients with OC had undergone chemotherapy for CRC in the past, compared with 40% of patients with ovarian mCRC (p < 0.001). The ovarian mCRC tumors were significantly larger, a necrosis sign was more frequently present, and tumors had an irregular wall or were fixed less frequently; ascites, omental cake, and carcinomatosis were less common in mCRC than in primary OC. In a subgroup of patients with ovarian mCRC who had not undergone treatment for CRC in anamnesis, tumors were larger, and had fewer papillations and more locules compared with primary OC. The highest AUC for the discrimination of ovarian mCRC from primary OC was for CART (0.768), followed by SA (0.735) and ADNEX calculated with CA-125 (0.680). Ovarian mCRC and primary OC can be distinguished based on patient anamnesis, ultrasound pattern recognition, a proposed decision tree model, and an ADNEX model with CA-125 levels

    Modeling shear waves through a viscoelastic medium induced by acoustic radiation force

    Get PDF
    In this study, a finite element model of a tissue-mimicking, viscoelastic phantom with a stiffer cylindrical inclusion subjected to an acoustic radiation force (ARF) is presented, and the resulting shear waves through the heterogeneous media are simulated, analyzed, and compared with experimental data. Six different models for the ARF were considered and compared. Each study used the same finite element model, but applied the following: (1) full radiation push; (2) focal region push; (3) single element focal point source; or (4) various thresholds of the full radiation push. For each case, displacements at discrete locations were determined and compared. The finite element simulation results for the full radiation push matched well with the experimental data with respect to replicating the shear wave speed and attenuation in the peak displacements through the background medium and inclusion, but did not illustrate comparable recovery after the peak displacements. As a result of this study, it has been shown that a focal region or point source push is not adequate to accurately model the effects of the full radiation push, but thresholding the full push can produce comparable results and reduce computation time

    How Thioredoxin Dissociates Its Mixed Disulfide

    Get PDF
    The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx
    • …
    corecore