710 research outputs found

    The characteristic initial value problem for colliding plane waves: The linear case

    Get PDF
    The physical situation of the collision and subsequent interaction of plane gravitational waves in a Minkowski background gives rise to a well-posed characteristic initial value problem in which initial data are specified on the two null characteristics that define the wavefronts. In this paper, we analyse how the Abel transform method can be used in practice to solve this problem for the linear case in which the polarization of the two gravitational waves is constant and aligned. We show how the method works for some known solutions, where problems arise in other cases, and how the problem can always be solved in terms of an infinite series if the spectral functions for the initial data can be evaluated explicitly.Comment: 14 pages. To appear in Class. Quantum Gra

    Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators

    Full text link
    The figure of merit for refrigerators performing finite-time Carnot-like cycles between two reservoirs at temperature ThT_h and TcT_c (<Th<T_h) is optimized. It is found that the coefficient of performance at maximum figure of merit is bounded between 0 and (9+8εc3)/2(\sqrt{9+8\varepsilon_c}-3)/2 for the low-dissipation refrigerators, where εc=Tc/(ThTc)\varepsilon_c =T_c/(T_h-T_c) is the Carnot coefficient of performance for reversible refrigerators. These bounds can be reached for extremely asymmetric low-dissipation cases when the ratio between the dissipation constants of the processes in contact with the cold and hot reservoirs approaches to zero or infinity, respectively. The observed coefficients of performance for real refrigerators are located in the region between the lower and upper bounds, which is in good agreement with our theoretical estimation.Comment: 5 journal pages, 3 figure

    Knowledge politics and new converging technologies: a social epistemological perspective

    Get PDF
    The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”

    How interdisciplinary is nanotechnology?

    Get PDF
    Facilitating cross-disciplinary research has attracted much attention in recent years, with special concerns in nanoscience and nanotechnology. Although policy discourse has emphasized that nanotechnology is substantively integrative, some analysts have countered that it is really a loose amalgam of relatively traditional pockets of physics, chemistry, and other disciplines that interrelate only weakly. We are developing empirical measures to gauge and visualize the extent and nature of interdisciplinary interchange. Such results speak to research organization, funding, and mechanisms to bolster knowledge transfer. In this study, we address the nature of cross-disciplinary linkages using “science overlay maps” of articles, and their references, that have been categorized into subject categories. We find signs that the rate of increase in nano research is slowing, and that its composition is changing (for one, increasing chemistry-related activity). Our results suggest that nanotechnology research encompasses multiple disciplines that draw knowledge from disciplinarily diverse knowledge sources. Nano research is highly, and increasingly, integrative—but so is much of science these days. Tabulating and mapping nano research activity show a dominant core in materials sciences, broadly defined. Additional analyses and maps show that nano research draws extensively upon knowledge presented in other areas; it is not constricted within narrow silos

    Do new Ethical Issues Arise at Each Stage of Nanotechnological Development?

    Get PDF
    The literature concerning ethical issues associated with nanotechnologies has become prolific. However, it has been claimed that ethical problems are only at stake with rather sophisticated nanotechnologies such as active nanostructures, integrated nanosystems and heterogeneous molecular nanosystems, whereas more basic nanotechnologies such as passive nanostructures mainly pose technical difficulties. In this paper I argue that fundamental ethical issues are already at stake with this more basic kind of nanotechnologies and that ethics impacts every kind of nanotechnologies, already from the simplest kind of engineered nanoproducts. These ethical issues are mainly associated with the social desirability of nanotechnologies, with the difficulties to define nanotechnologies properly, with the important uncertainties surrounding nanotechnologies, with the threat of ‘nano-divide’, and with nanotechnology as ‘dual-use technology’

    Functionally Significant Coumarin-Related Variant Alleles and Time to Therapeutic Range in Chilean Cardiovascular Patients

    Get PDF
    Indexación: Scopus.Despite the development of new oral agents over the last decade, vitamin K antagonists (VKAs) remain the most widely used anticoagulants for treating and preventing thromboembolism worldwide. In Chile, the Ministry of Health indicates that acenocoumarol should be used in preference to any other coumarin. Complications of inappropriate dosing are among the most frequently reported adverse events associated with this medication. It is well known that polymorphisms in pharmacokinetic and pharmacodynamic proteins related to coumarins (especially warfarin) influence response to these drugs. This work analyzed the impact of CYP2C19*2 (rs4244285), CYP1A2*1F (rs762551), GGCx (rs11676382), CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), CYP4F2 (rs2108622), VKORC1 (rs9923231), VKORC1 (rs7294), CYP3A4*1B (rs2740574), and ABCB1 (rs1045642) polymorphisms on time to therapeutic range for oral anticoagulants in 304 Chilean patients. CYP2C9*3 polymorphisms were associated with time to therapeutic range for acenocoumarol in Chilean patients, and the CYP4F2 TT genotype, MDR1 A allele, CYP1A2 A allele, and CYP3A4T allele are promising variants that merit further analysis. The presence of polymorphisms explained only 4.1% of time to therapeutic range for acenocoumarol in a multivariate linear model. These results improve our understanding of the basis of ethnic variations in drug metabolism and response to oral anticoagulant therapy. We hope that these findings will contribute to developing an algorithm for VKA dose adjustment in the Chilean population in the near future, decreasing the frequency of stroke, systemic embolism, and bleeding-related adverse events.https://journals.sagepub.com/doi/10.1177/107602962090915

    Coefficient of performance under optimized figure of merit in minimally nonlinear irreversible refrigerator

    Full text link
    We apply the model of minimally nonlinear irreversible heat engines developed by Izumida and Okuda [EPL {\bf 97}, 10004 (2012)] to refrigerators. The model assumes extended Onsager relations including a new nonlinear term accounting for dissipation effects. The bounds for the optimized regime under an appropriate figure of merit and the tight-coupling condition are analyzed and successfully compared with those obtained previously for low-dissipation Carnot refrigerators in the finite-time thermodynamics framework. Besides, we study the bounds for the nontight-coupling case numerically. We also introduce a leaky low-dissipation Carnot refrigerator and show that it serves as an example of the minimally nonlinear irreversible refrigerator, by calculating its Onsager coefficients explicitly.Comment: Typo in eq.(34) is fixe

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
    corecore