2,744 research outputs found
Coexistence of Single and Double-Quantum Vortex Lines
We discuss the configurations in which singly and doubly quantized vortex
lines may coexist in a rotating superfluid. General principles of energy
minimization lead to the conclusion that in equilibrium the two vortex species
segregate within a cylindrical vortex cluster in two coaxial domains where the
singly quantized lines are in the outer annular region. This is confirmed with
simulation calculations on discrete vortex lines. Experimentally the
coexistence can be studied in rotating superfluid He-A. With cw NMR
techniques we find the radial distribution of the two vortex species to depend
on how the cluster is prepared: (i) By cooling through in rotation,
coexistence in the minimum energy configuration is confirmed. (ii) A glassy
agglomerate is formed if one starts with an equilibrium cluster of
single-quantum vortex lines and adds to it sequentially double-quantum lines,
by increasing the rotation velocity in the superfluid state. This proves that
the energy barriers, which separate different cluster configurations, are too
high for metastabilities to anneal.Comment: 12 pages, 11 figures; Changed content, 15 pages, 14 figure
Asymptotic motion of a single vortex in a rotating cylinder
We study numerically the behavior of a single quantized vortex in a rotating
cylinder. We study in particular the spiraling motion of a vortex in a cylinder
that is parallel to the rotation axis. We determine the asymptotic form of the
vortex and its axial and azimuthal propagation velocities under a wide range of
parameters. We also study the stability of the vortex line and the effect of
tilting the cylinder from the rotation axis.Comment: 9 pages, 10 figures. Considerable changes, now close to the published
versio
Vortex lines or sheets - what is formed in dynamic drives?
In isotropic macroscopic quantum systems vortex lines can be formed while in
anisotropic systems also vortex sheets are possible. Based on measurements of
superfluid 3He-A, we present the principles which select between these two
competing forms of quantized vorticity: sheets displace lines if the frequency
of the external field exceeds a critical limit. The resulting topologically
stable state consists of multiple vortex sheets and has much faster dynamics
than the state with vortex lines.Comment: RevTex, 5 pages, sumbitted to Phys. Rev. Let
Thermal Detection of Turbulent and Laminar Dissipation in Vortex Front Motion
We report on direct measurements of the energy dissipated in the spin-up of
the superfluid component of 3He-B. A vortex-free sample is prepared in a
cylindrical container, where the normal component rotates at constant angular
velocity. At a temperature of 0.20Tc, seed vortices are injected into the
system using the shear-flow instability at the interface between 3He-B and
3He-A. These vortices interact and create a turbulent burst, which sets a
propagating vortex front into motion. In the following process, the free energy
stored in the initial vortex-free state is dissipated leading to the emission
of thermal excitations, which we observe with a bolometric measurement. We find
that the turbulent front contains less than the equilibrium number of vortices
and that the superfluid behind the front is partially decoupled from the
reference frame of the container. The final equilibrium state is approached in
the form of a slow laminar spin-up as demonstrated by the slowly decaying tail
of the thermal signal.Comment: 12 pages, 5 figures, to appear in Journal of Low Temperature Physic
Principal-component analysis of two-particle azimuthal correlations in PbPb and pPb collisions at CMS
Peer reviewe
- …