4,907 research outputs found
An alternative field theory for the Kosterlitz-Thouless transition
We extend a Gaussian model for the internal electrical potential of a
two-dimensional Coulomb gas by a non-Gaussian measure term, which singles out
the physically relevant configurations of the potential. The resulting
Hamiltonian, expressed as a functional of the internal potential, has a
surprising large-scale limit: The additional term simply counts the number of
maxima and minima of the potential. The model allows for a transparent
derivation of the divergence of the correlation length upon lowering the
temperature down to the Kosterlitz-Thouless transition point.Comment: final version, extended discussion, appendix added, 8 pages, no
figure, uses IOP documentclass iopar
The Geography of Non-formal Manifolds
We show that there exist non-formal compact oriented manifolds of dimension
and with first Betti number if and only if and
, or and . Moreover, we present explicit
examples for each one of these cases.Comment: 8 pages, one reference update
Dynamic Nuclear Polarization in Double Quantum Dots
We theoretically investigate the controlled dynamic polarization of lattice
nuclear spins in GaAs double quantum dots containing two electrons. Three
regimes of long-term dynamics are identified, including the build up of a large
difference in the Overhauser fields across the dots, the saturation of the
nuclear polarization process associated with formation of so-called "dark
states," and the elimination of the difference field. We show that in the case
of unequal dots, build up of difference fields generally accompanies the
nuclear polarization process, whereas for nearly identical dots, build up of
difference fields competes with polarization saturation in dark states. The
elimination of the difference field does not, in general, correspond to a
stable steady state of the polarization process.Comment: 4 pages, 2 figure
Modification of electronic surface states by graphene islands on Cu(111)
We present a study of graphene/substrate interactions on UHV-grown graphene
islands with minimal surface contamination using \emph{in situ} low-temperature
scanning tunneling microscopy (STM). We compare the physical and electronic
structure of the sample surface with atomic spatial resolution on graphene
islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like
series of image potential states is shifted toward lower energy over the
graphene islands relative to Cu(111), indicating a decrease in the local work
function, and the resonances have a much smaller linewidth, indicating reduced
coupling to the bulk. In addition, we show the dispersion of the occupied
Cu(111) Shockley surface state is influenced by the graphene layer, and both
the band edge and effective mass are shifted relative to bare Cu(111).Comment: 12 pages, 3 figure
Subband Engineering Even-Denominator Quantum Hall States
Proposed even-denominator fractional quantum Hall effect (FQHE) states
suggest the possibility of excitations with non-Abelian braid statistics.
Recent experiments on wide square quantum wells observe even-denominator FQHE
even under electrostatic tilt. We theoretically analyze these structures and
develop a procedure to accurately test proposed quantum Hall wavefunctions. We
find that tilted wells favor partial subband polarization to yield Abelian
even-denominator states. Our results show that tilting quantum wells
effectively engineers different interaction potentials allowing exploration of
a wide variety of even-denominator states
- …