20 research outputs found

    RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems

    Full text link
    The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2)(1-4) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (T(H)1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62842/1/416194a.pd

    La Cruz Roja Española, la repatriación de los soldados de las guerras coloniales y el desarrollo de la ciencia médica en España, 1896-1950

    Full text link

    A multi-character analysis of Struthiopteris leads to the rescue of Spicantopsis (Blechnaceae, Polypodiopsida)

    No full text
    The family Blechnaceae is a moderately sized leptosporangiate fern lineage, with 24 genera and around 250 species. Struthiopteris accommodates small to medium-sized, dimorphic, pinnate species. It is composed of six northern species: S. spicant is distributed in western parts of Europe and North America; S. fallax is endemic to Iceland; S. niponica, S. amabilis and S. castanea are endemic to Japan, and S. hancockii occurs in Japan and Taiwan. Due to the lack of a global review and to its highly interesting geographical distribution, this genus merits further study to clarify its taxonomy, species relationships, and distributional pattern. The present study aims to achieve the following goals: (a) identify and describe morphological characters supporting the taxonomy of Struthiopteris; (b) reconstruct a complete phylogeny for the genus; (c) study the biogeographical history of Struthiopteris at a global scale. The morphological study involved the observation of characters ranging from rhizome scales to spores over 164 individuals. Phylogenies were constructed applying ML and BI techniques over 51 newly produced sequences of three chloroplast markers (rbcL, trnL-trnF, psbA-trnH), using the species Blechnidium melanopus and Brainea insignis as closest relatives. For the molecular dating and historical biogeography analyses, we estimated and compared ancestral ranges under several models. Most of the morphological characters led us to discern two groups of species: the S. spicant group (S. spicant, S. fallax, and S. castanea) and the S. niponica group (the remaining species). In our molecular phylogeny, the supposed sister genus Blechnidium always appeared as nested within Struthiopteris, rendering this genus non-monophyletic. The two groups identified by the morphology appeared as monophyletic clades within Struthiopteris, with the clade S. spicant more closely related to Blechnidium than to the clade S. niponica. For all these reasons, we propose to rescue the now-disused genus Spicantopsis for the species belonging to the S. niponica group: indeed, this genus was created c. 100 years ago to reunite the same species S. amabilis, S. niponica, and S. hancockii. Our results suggest that all members of this group of genera (Blechnidium, Struthiopteris, Spicantopsis) emerged in East Asia about 85 mya, at a time when Japan was still part of the mainland. It appears that, for most of their history, the members of these genera have been confined to East Asia, with one dispersal to the Americas by an ancestor within Struthiopteris s.str., and additional dispersals to India and the Philippines by Blechnidium melanopus
    corecore