8,424 research outputs found

    On the Space Time of a Galaxy

    Full text link
    We present an exact solution of the averaged Einstein's field equations in the presence of two real scalar fields and a component of dust with spherical symmetry. We suggest that the space-time found provides the characteristics required by a galactic model that could explain the supermassive central object and the dark matter halo at once, since one of the fields constitutes a central oscillaton surrounded by the dust and the other scalar field distributes far from the coordinate center and can be interpreted as a halo. We show the behavior of the rotation curves all along the background. Thus, the solution could be a first approximation of a ``long exposition photograph'' of a galaxy.Comment: 8 pages REVTeX, 11 eps figure

    Oscillatons revisited

    Get PDF
    In this paper, we study some interesting properties of a spherically symmetric oscillating soliton star made of a real time-dependent scalar field which is called an oscillaton. The known final configuration of an oscillaton consists of a stationary stage in which the scalar field and the metric coefficients oscillate in time if the scalar potential is quadratic. The differential equations that arise in the simplest approximation, that of coherent scalar oscillations, are presented for a quadratic scalar potential. This allows us to take a closer look at the interesting properties of these oscillating objects. The leading terms of the solutions considering a quartic and a cosh scalar potentials are worked in the so called stationary limit procedure. This procedure reveals the form in which oscillatons and boson stars may be related and useful information about oscillatons is obtained from the known results of boson stars. Oscillatons could compete with boson stars as interesting astrophysical objects, since they would be predicted by scalar field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version published in Classical and Quantum Gravit

    Quintessence and Scalar Dark Matter in the Universe

    Full text link
    Continuing with previous works, we present a cosmological model in which dark matter and dark energy are modeled by scalar fields Φ\Phi and Ψ\Psi, respectively, endowed with the scalar potentials V(Φ)=Vo[cosh(λκoΦ)1]V(\Phi)=V_{o}[ \cosh {(\lambda \sqrt{\kappa_{o}}\Phi)}-1] and V~(Ψ)=Vo~[sinh(ακoΨ)]β\tilde{V}(\Psi)=\tilde{V_{o}}[ \sinh {(\alpha \sqrt{\kappa_{o}}\Psi)}] ^{\beta}. This model contains 95% of scalar field. We obtain that the scalar dark matter mass is mΦ1026eV.m_{\Phi}\sim 10^{-26}eV. The solution obtained allows us to recover the success of the standard CDM. The implications on the formation of structure are reviewed. We obtain that the minimal cutoff radio for this model is rc1.2kpc.r_{c}\sim 1.2 kpc.Comment: 4 pages REVTeX, 3 eps color figures. Minor changes and references updated. To appear in Classical and Quantum Gravity as a Letter to the Editor. More information at http://www.fis.cinvestav.mx/~siddh/PHI

    Fungi and Fusarium mycotoxins in corn silages

    Get PDF
    Ensiled forages and grains are very important for feeding dairy cows in the Portuguese Azores islands. Fungal spoilage of animal feed silage occurs frequently. Moulds have no significant beneficial purpose to the ensiling process, and their ability to proliferate results from silage environments that are aerobically unstable, leading to unstable silage, loss of nutritive substances and mycotoxins contamination. Eighty maize silos produced in the Azores were collected. Samples of the middle, surface, and critical points, which had visible mould contamination, were examined for the total fungi and Aspergillus fumigatus. Fumonisin B1 and deoxynivalenol were analysed for in 25 samples from the silo middle, that were considered to be good silos from the dry matter and the pH perspective. All samples contained fungi. High levels (over 104 CFU/g) of yeasts were found in 70 samples (89% of total samples). Thirteen samples (54%) from the middle, 21 samples (72%) from the surface and 19 samples (86%) from the critical points contained A. fumigatus. A. fumigatus is the dominant spoilage mould in maize silage in the Azores. Other fungi that were identified belong to the genera Absidia, Aspergillus, Cladosporium, Monascus, Mucor, Penicillium, Phoma, Rhizopus, Sepedonium, Trichoderma, Verticillium. The mycotoxicological evaluation indicated contamination of 14 samples (56%) with fumonisin B1 and 10 samples (40%) with deoxynivalenol. Since Fusarium strains were rarely isolated, the presence of these mycotoxins could be explained by field contamination

    Galactic Collapse of Scalar Field Dark Matter

    Full text link
    We present a scenario for galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for galactic formation, which is in agreement with cosmological observations and phenomenological studies in galaxies.Comment: 4 pages, 3 figue

    Bose-Einstein condensate dark matter phase transition from finite temperature symmetry breaking of Klein-Gordon fields

    Full text link
    In this paper the thermal evolution of scalar field dark matter particles at finite cosmological temperatures is studied. Starting with a real scalar field in a thermal bath and using the one loop quantum corrections potential, we rewrite Klein-Gordon's (KG) equation in its hydrodynamical representation and study the phase transition of this scalar field due to a Z_2 symmetry breaking of its potential. A very general version of a nonlinear Schr\"odinger equation is obtained. When introducing Madelung's representation, the continuity and momentum equations for a non-ideal SFDM fluid are formulated, and the cosmological scenario with the SFDM described in analogy to an imperfect fluid is then considered where dissipative contributions are obtained in a natural way.Additional terms appear compared to those obtained in the classical version commonly used to describe the \LambdaCDM model, i.e., the ideal fluid. The equations and parameters that characterize the physical properties of the system such as its energy, momentum and viscous flow are related to the temperature of the system, scale factor, Hubble's expansion parameter and the matter energy density. Finally, some details on how galaxy halos and smaller structures might be able to form by condensation of this SF are given.Comment: Substantial changes have been made to the paper, following the referees recommendations. 16 pages. Published in Classical and Quantum Gravit

    On a generalization of the binomial distribution and its Poisson-like limit

    Full text link
    We examine a generalization of the binomial distribution associated with a strictly increasing sequence of numbers and we prove its Poisson-like limit. Such generalizations might be found in quantum optics with imperfect detection. We discuss under which conditions this distribution can have a probabilistic interpretation.Comment: 17 pages, 6 figure
    corecore