11,404 research outputs found

    Propagating Waves in a Monolayer of Gas-Fluidized Rods

    Get PDF
    We report on an observation of propagating compression waves in a quasi-two-dimensional monolayer of apolar granular rods fluidized by an upflow of air. The collective wave speed is an order of magnitude faster than the speed of the particles. This gives rise to anomalously large number fluctuations dN ~ N0.72±0.04N^{0.72 \pm 0.04}, which are greater than ordinary number fluctuations of N^{1/2}. We characterize the waves by calculating the spatiotemporal power spectrum of the density. The position of observed peaks, as a function of frequency w and wavevector k, yields a linear dispersion relationship in the long-time, long-wavelength limit and a wavespeed c = w/k. Repeating this analysis for systems at different densities and air speeds, we observe a linear increase in the wavespeed with increasing packing fraction with no dependence on the airflow. Although air-fluidized rods self-propel individually or in dilute collections, the parallel and perpendicular root-mean-square speeds of the rods indicate that they no longer self-propel when propagating waves are present. Based on this mutual exclusivity, we map out the phase behavior for the existence of waves vs self-propulsion as a function of density and fluidizing airflow

    Adaptive tracking notch filter system Patent

    Get PDF
    Adaptive notch filter, using modulation techniques for reversed phase noise signa

    Latent and Manifest Function of the Theory and Research of Bronislaw Malinowski

    Get PDF

    Study of the glass transition in the amorphous interlamellar phase of highly crystallized poly(ethylene terephthalate)

    Full text link
    Poly(ethylene terephthalate) (PET) is a semi--crystalline polymer that can be crystallized to different degrees heating from the amorphous state. Even when primary crystallization has been completed, secondary crystallization can take place with further annealing and modify the characteristics of the amorphous interlamellar phase. In this work we study the glass transition of highly crystallized PET and in which way it is modified by secondary crystallization. Amorphous PET samples were annealed for 4 hours at temperatures between 140C and 180C. The secondary crystallization process was monitored by differential scanning calorimetry and the glass transition of the remaining interllamelar amorphous phase was studied by Thermally Stimulated Depolarization Currents measurements. Non--isothermal window polarization is employed to resolve the relaxation in modes with a well--defined relaxation time that are subsequently adjusted to several standard models. Analysis of experimental results, show that cooperativity is reduced to a great extend in the interlamellar amorphous regions. The evolution of the modes on crystallization temperature reveals that large scale movements are progressively replaced by more localized ones, with higher frequency, as crystallization takes place at higher temperatures. As a consequence, the glass transition temperature of the amorphous interlamellar phase tends to lower values for higher annealing temperatures. Evolution of calorimetric scans of the glass transition are simulated from the obtained results and show the same behaviour. The interpretation of these results in terms of current views about secondary crystallization is discussed.Comment: 30 pages, 5 tables, 12 figures; figure 5 modifie

    Fluorescent visualization of a spreading surfactant

    Full text link
    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally-resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently-tagged surfactant. We find that the leading edge of spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration which trails the leading edge, and a flat, monolayer-scale spreading film which differs from concentration profiles predicted by current models. Both the Marangoni ridge and surfactant leading edge can be described to spread as RtδR \propto t^{\delta}. We find spreading exponents, δH0.30\delta_H \approx 0.30 and δΓ0.22\delta_\Gamma \approx 0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4\delta = 1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge

    Cloaked Facebook pages: Exploring fake Islamist propaganda in social media

    Get PDF
    This research analyses cloaked Facebook pages that are created to spread political propaganda by cloaking a user profile and imitating the identity of a political opponent in order to spark hateful and aggressive reactions. This inquiry is pursued through a multi-sited online ethnographic case study of Danish Facebook pages disguised as radical Islamist pages, which provoked racist and anti-Muslim reactions as well as negative sentiments towards refugees and immigrants in Denmark in general. Drawing on Jessie Daniels’ critical insights into cloaked websites, this research furthermore analyses the epistemological, methodological and conceptual challenges of online propaganda. It enhances our understanding of disinformation and propaganda in an increasingly interactive social media environment and contributes to a critical inquiry into social media and subversive politics

    Benefits and Risks of Weight-Loss Treatment for Older, Obese Women

    Get PDF
    Background: A key issue in the treatment of obesity in older adults is whether the health benefits of weight loss outweigh the potential risks with respect to musculoskeletal injury. Objective: To compare change in weight, improvements in metabolic risk factors, and reported musculoskeletal adverse events in middle-aged (50-59 years) and older (65-74 years), obese women. Materials and methods: Participants completed an initial 6-month lifestyle intervention for weight loss, comprised of weekly group sessions, followed by 12 months of extended care with biweekly contacts. Weight and fasting blood samples were assessed at baseline, month 6, and month 18; data regarding adverse events were collected throughout the duration of the study. Results: Both middle-aged (n = 162) and older (n = 56) women achieved significant weight reductions from baseline to month 6 (10.1 +/- 0.68 kg and 9.3 +/- 0.76 kg, respectively) and maintained a large proportion of their losses at month 18 (7.6 +/- 0.87 kg and 7.6 +/- 1.3 kg, respectively); there were no significant differences between the two groups with respect to weight change. Older women further experienced significant reductions in systolic blood pressure, HbA(1c), and C-reactive protein from baseline to month 6 and maintained these improvements at month 18. Despite potential safety concerns, we found that older women were no more likely to experience musculoskeletal adverse events during the intervention as compared with their middle-aged counterparts. Conclusion: These results suggest that older, obese women can experience significant health benefits from lifestyle treatment for obesity, including weight loss and improvements in disease risk factors. Further investigation of the impact of weight loss on additional health-related parameters and risks (eg, body composition, muscular strength, physical functioning, and injuries) in older adults is needed.National Heart, Lung and Blood Institute R18HL73326University of FloridaDivision of Statistics and Scientific Computatio

    Power-law carrier dynamics in semiconductor nanocrystals at nanosecond time scales

    Full text link
    We report the observation of power law dynamics on nanosecond to microsecond time scales in the fluorescence decay from semiconductor nanocrystals, and draw a comparison between this behavior and power-law fluorescence blinking from single nanocrystals. The link is supported by comparison of blinking and lifetime data measured simultaneously from the same nanocrystal. Our results reveal that the power law coefficient changes little over the nine decades in time from 10 ns to 10 s, in contrast with the predictions of some diffusion based models of power law behavior.Comment: 3 pages, 2 figures, compressed for submission to Applied Physics Letter
    corecore