902 research outputs found

    Colloidal Jamming at Interfaces: a Route to Fluid-bicontinuous Gels

    Full text link
    Colloidal particles or nanoparticles, with equal affinity for two fluids, are known to adsorb irreversibly to the fluid-fluid interface. We present large-scale computer simulations of the demixing of a binary solvent containing such particles. The newly formed interface sequesters the colloidal particles; as the interface coarsens, the particles are forced into close contact by interfacial tension. Coarsening is dramatically curtailed, and the jammed colloidal layer seemingly enters a glassy state, creating a multiply connected, solid-like film in three dimensions. The resulting gel contains percolating domains of both fluids, with possible uses as, for example, a microreaction medium

    Binary fluids under steady shear in three dimensions

    Full text link
    We simulate by lattice Boltzmann the steady shearing of a binary fluid mixture with full hydrodynamics in three dimensions. Contrary to some theoretical scenarios, a dynamical steady state is attained with finite correlation lengths in all three spatial directions. Using large simulations we obtain at moderately high Reynolds numbers apparent scaling expon ents comparable to those found by us previously in 2D. However, in 3D there may be a crossover to different behavior at low Reynolds number: accessing this regime requires even larger computational resource than used here.Comment: 4 pages, 3 figure

    Nonequilibrium steady states in sheared binary fluids

    Full text link
    We simulate by lattice Boltzmann the steady shearing of a binary fluid mixture undergoing phase separation with full hydrodynamics in two dimensions. Contrary to some theoretical scenarios, a dynamical steady state is attained with finite domain lengths Lx,yL_{x,y} in the directions (x,y)x,y) of velocity and velocity gradient. Apparent scaling exponents are estimated as Lx∼γ˙−2/3L_{x}\sim\dot{\gamma}^{-2/3} and Ly∼γ˙−3/4L_{y}\sim\dot{\gamma}^{-3/4}. We discuss the relative roles of diffusivity and hydrodynamics in attaining steady state.Comment: 4 pages, 3 figure

    Colloidal templating at a cholesteric - oil interface: Assembly guided by an array of disclination lines

    Full text link
    We simulate colloids (radius R∼1μR \sim 1\mum) trapped at the interface between a cholesteric liquid crystal and an immiscible oil, at which the helical order (pitch p) in the bulk conflicts with the orientation induced at the interface, stabilizing an ordered array of disclinations. For weak anchoring strength W of the director field at the colloidal surface, this creates a template, favoring particle positions eitheron top of or midway between defect lines, depending on α=R/p\alpha = R/p. For small α\alpha, optical microscopy experiments confirm this picture, but for larger α\alpha no templating is seen. This may stem from the emergence at moderate W of a rugged energy landscape associated with defect reconnections.Comment: 5 pages, 4 figure
    • …
    corecore