39 research outputs found

    NK Cell Receptor/H2-Dk–Dependent Host Resistance to Viral Infection Is Quantitatively Modulated by H2q Inhibitory Signals

    Get PDF
    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2k, we generated double congenic mice between MA/My and BALB.K mice and an F2 cross between FVB/N (H-2q) and BALB.K (H2k) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2k in conjunction with Cmv3MA/My or Cmv3FVB were resistant to MCMV infection. Subsequently, an F3 cross was carried out between transgenic FVB/H2-Dk and MHC-I deficient mice in which only the progeny expressing Cmv3FVB and a single H2-Dk class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell–dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2q alleles influence the expression level of H2q molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2q alleles. Our results support a model in which H-2q molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-Dk on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell–mediated control of viral load

    Strain-Specific Differences in the Genetic Control of Two Closely Related Mycobacteria

    Get PDF
    The host response to mycobacterial infection depends on host and pathogen genetic factors. Recent studies in human populations suggest a strain specific genetic control of tuberculosis. To test for mycobacterial-strain specific genetic control of susceptibility to infection under highly controlled experimental conditions, we performed a comparative genetic analysis using the A/J- and C57BL/6J-derived recombinant congenic (RC) mouse panel infected with the Russia and Pasteur strains of Mycobacterium bovis Bacille Calmette Guérin (BCG). Bacillary counts in the lung and spleen at weeks 1 and 6 post infection were used as a measure of susceptibility. By performing genome-wide linkage analyses of loci that impact on tissue-specific bacillary burden, we were able to show the importance of correcting for strain background effects in the RC panel. When linkage analysis was adjusted on strain background, we detected a single locus on chromosome 11 that impacted on pulmonary counts of BCG Russia but not Pasteur. The same locus also controlled the splenic counts of BCG Russia but not Pasteur. By contrast, a locus on chromosome 1 which was indistinguishable from Nramp1 impacted on splenic bacillary counts of both BCG Russia and Pasteur. Additionally, dependent upon BCG strain, tissue and time post infection, we detected 9 distinct loci associated with bacillary counts. Hence, the ensemble of genetic loci impacting on BCG infection revealed a highly dynamic picture of genetic control that reflected both the course of infection and the infecting strain. This high degree of adaptation of host genetics to strain-specific pathogenesis is expected to provide a suitable framework for the selection of specific host-mycobacteria combinations during co-evolution of mycobacteria with humans

    Joint modelling of family and case controls through mixtures

    No full text
    Non UBCUnreviewedAuthor affiliation: Memorial UniversityFacult

    Effect of Gene and Physical Activity Interaction on Trunk Fat Percentage Among the Newfoundland Population

    No full text
    Objective To explore the effect of FTO gene and physical activity interaction on trunk fat percentage. Design and Methods Subjects are 3,004 individuals from Newfoundland and Labrador whose trunk fat percentage and physical activity were recorded, and who were genotyped for 11 single-nucleotide polymorphisms (SNPs) in the FTO gene. Subjects were stratified by gender. Multiple tests and multiple regressions were used to analyze the effects of physical activity, variants of FTO , age, and their interactions on trunk fat percentage. Dietary information and other environmental factors were not considered. Results Higher levels of physical activity tend to reduce trunk fat percentage in all individuals. Furthermore, in males, rs9939609 and rs1421085 were significant (α = 0.05) in explaining central body fat, but no SNPs were significant in females. For highly active males, trunk fat percentage varied significantly between variants of rs9939609 and rs1421085, but there is no significant effect among individuals with low activity. The other SNPs examined were not significant in explaining trunk fat percentage. Conclusions Homozygous male carriers of non-obesity risk alleles at rs9939609 and rs1421085 will have significant reduction in central body fat from physical activity in contrast to homozygous males of the obesity-risk alleles. The additive effect of these SNPs is found in males with high physical activity only

    Impairment of Protective Immunity to Blood-Stage Malaria by Concurrent Nematode Infection

    No full text
    Helminthiases, which are highly prevalent in areas where malaria is endemic, have been shown to modulate or suppress the immune response to unrelated antigens or pathogens. In this study, we established a murine model of coinfection with a gastrointestinal nematode parasite, Heligmosomoides polygyrus, and the blood-stage malaria parasite Plasmodium chabaudi AS in order to investigate the modulation of antimalarial immunity by concurrent nematode infection. Chronic infection with the nematode for 2, 3, or 5 weeks before P. chabaudi AS infection severely impaired the ability of C57BL/6 mice to control malaria, as demonstrated by severe mortality and significantly increased malaria peak parasitemia levels. Coinfected mice produced significantly lower levels of gamma interferon (IFN-γ) during P. chabaudi AS infection than mice infected with malaria alone. Concurrent nematode infection also suppressed production of type 1-associated, malaria-specific immunoglobulin G2a. Mice either infected with the nematode alone or coinfected with the nematode and malaria had high transforming growth factor β1 (TGF-β1) levels, and concurrent nematode and malaria infections resulted in high levels of interleukin-10 in vivo. Splenic CD11c(+) dendritic cells (DC) from mice infected with malaria alone and coinfected mice showed similarly increased expression of CD40, CD80, and CD86, but DC from coinfected mice were unable to induce CD4(+) T-cell proliferation and optimal IFN-γ production in response to the malaria antigen in vitro. Importantly, treatment of nematode-infected mice with an anthelmintic drug prior to malaria infection fully restored protective antimalarial immunity and reduced TGF-β1 levels. These results demonstrate that concurrent nematode infection strongly modulates multiple aspects of immunity to blood-stage malaria and consequently impairs the development of protective antimalarial immunity

    Evaluation of the influence of two transport boxes on the incubation, hatching and emergence of Kemp's ridley turtle (Lepidochelys kempii) eggs

    No full text
    Anthropogenic activities directly and indirectly affect the life cycle of Kemp's ridley turtles (Lepidochelys kempii). The transport of sea turtle eggs in boxes helps to establish new nesting areas and increases the possibility of turtle survival. This study aimed to compare the effects of two types of transport boxes on egg incubation, hatching rate and turtle emergence: a conventional plastic crate-type box with polystyrene nets as egg protection, and an experimental plywood box with convoluted (egg carton) foam as egg protection. Both boxes were used to transport eggs from 40 in situ nests (n = 20 nests transported by each box system, with 89–97 eggs per nest) to the Tepehuajes station (Tamaulipas, Mexico), during the nesting season from 23 April to 31 May 2000. Incubation period, and hatching and emergence rates for both box systems were compared using Student's t-test. The results showed that the experimental box had a significant positive effect on hatching and emergence rates when compared with the conventional plastic box, representing a feasible alternative for nest translocation procedures.

    Allelic Variation in TLR4 Is Linked to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Chickens

    No full text
    Toll-like receptor 4 (TLR4) is part of a group of evolutionarily conserved pattern recognition receptors involved in the activation of the immune system in response to various pathogens and in the innate defense against infection. We describe here the cloning and characterization of the avian orthologue of mammalian TLR4. Chicken TLR4 encodes a 843-amino-acid protein that contains a leucine-rich repeat extracellular domain, a short transmembrane domain typical of type I transmembrane proteins, and a Toll-interleukin-1R signaling domain characteristic of all TLR proteins. The chicken TLR4 protein shows 46% identity (64% similarity) to human TLR4 and 41% similarity to other TLR family members. Northern blot analysis reveals that TLR4 is expressed at approximately the same level in all tissues tested, including brain, thymus, kidney, intestine, muscle, liver, lung, bursa of Fabricius, heart, and spleen. The probe detected only one transcript of ca. 4.4 kb in length for all tissues except muscle where the size of TLR4 mRNA was ca. 9.6 kb. We have mapped TLR4 to microchromosome E41W17 in a region harboring the gene for tenascin C and known to be well conserved between the chicken and mammalian genomes. This region of the chicken genome was shown previously to harbor a Salmonella susceptibility locus. By using linkage analysis, TLR4 was shown to be linked to resistance to infection with Salmonella enterica serovar Typhimurium in chickens (likelihood ratio test of 10.2, P = 0.00138), suggesting a role of TLR4 in the host response of chickens to Salmonella infection
    corecore