12 research outputs found

    Ultraviolet modified photons and anisotropies in the cosmic microwave background radiation

    Get PDF
    We discuss a minimal canonical modification of electrodynamics in order to account for ultraviolet Lorentz violating effects. This modification creates a birefringence that rotates the polarization planes from different directions. Such effects might be detectable in the anisotropic polarization of the Cosmic Microwave Background radiation.Comment: RevTeX, 4p

    String solutions in Chern-Simons-Higgs model coupled to an axion

    Full text link
    We study a d=2+1 dimensional Chern-Simons gauge theory coupled to a Higgs scalar and an axion field, finding the form of the potential that allows the existence of selfdual equations and the corresponding Bogomolny bound for the energy of static configurations. We show that the same conditions allow for the N=2 supersymmetric extension of the model, reobtaining the BPS equations from the supersymmetry requirement. Explicit electrically charged vortex-like solutions to these equations are presented.Comment: 11 pages, 3 figure

    Microcausality and quantization of the fermionic Myers-Pospelov model

    Full text link
    We study the fermionic sector of the Myers and Pospelov theory with a general background nn. The spacelike case without temporal component is well defined and no new ingredients came about, apart from the explicit Lorentz invariance violation. The lightlike case is ill defined and physically discarded. However, the other case where a nonvanishing temporal component of the background is present, the theory is physically consistent. We show that new modes appear as a consequence of higher time derivatives. We quantize the timelike theory and calculate the microcausality violation which turns out to occur near the light cone.Comment: 9 pages and 3 figures, new version accepted in EPJC, Volume 72, Issue 9, includes lee-wick review, microcausalit

    Finite Temperature Induced Fermion Number In The Nonlinear sigma Model In (2+1) Dimensions

    Full text link
    We compute the finite temperature induced fermion number for fermions coupled to a static nonlinear sigma model background in (2+1) dimensions, in the derivative expansion limit. While the zero temperature induced fermion number is well known to be topological (it is the winding number of the background), at finite temperature there is a temperature dependent correction that is nontopological -- this finite T correction is sensitive to the detailed shape of the background. At low temperature we resum the derivative expansion to all orders, and we consider explicit forms of the background as a CP^1 instanton or as a baby skyrmion.Comment: 10 pp, revtex

    Astrophysical Origins of Ultrahigh Energy Cosmic Rays

    Full text link
    In the first part of this review we discuss the basic observational features at the end of the cosmic ray energy spectrum. We also present there the main characteristics of each of the experiments involved in the detection of these particles. We then briefly discuss the status of the chemical composition and the distribution of arrival directions of cosmic rays. After that, we examine the energy losses during propagation, introducing the Greisen-Zaptsepin-Kuzmin (GZK) cutoff, and discuss the level of confidence with which each experiment have detected particles beyond the GZK energy limit. In the second part of the review, we discuss astrophysical environments able to accelerate particles up to such high energies, including active galactic nuclei, large scale galactic wind termination shocks, relativistic jets and hot-spots of Fanaroff-Riley radiogalaxies, pulsars, magnetars, quasar remnants, starbursts, colliding galaxies, and gamma ray burst fireballs. In the third part of the review we provide a brief summary of scenarios which try to explain the super-GZK events with the help of new physics beyond the standard model. In the last section, we give an overview on neutrino telescopes and existing limits on the energy spectrum and discuss some of the prospects for a new (multi-particle) astronomy. Finally, we outline how extraterrestrial neutrino fluxes can be used to probe new physics beyond the electroweak scale.Comment: Higher resolution version of Fig. 7 is available at http://www.angelfire.com/id/dtorres/down3.html. Solicited review article prepared for Reports on Progress in Physics, final versio
    corecore