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Abstract

We discuss a minimal canonical modification of electrodynamics in order to account for ultraviolet Lorentz violating effects. This modification
creates a birefringence that rotates the polarization planes from different directions. Such effects might be detectable in the anisotropic polarization
of the Cosmic Microwave Background radiation.
© 2006 Elsevier B.V. Open access under CC BY license.
The cornerstone of modern cosmology is the cosmological
principle, which is based on the notion that spacetime is lo-
cally Lorenz invariant. The analysis, however, of problems such
as the matter-antimatter asymmetry, the origin of dark mat-
ter/energy, or even the nature of the primordial magnetic field,
calls for a critical reconsideration of the principles underlying
the cosmological standard model [1].

In this direction, several authors have put to the test the valid-
ity of Lorentz symmetry [2] in the propagation of light from far-
away galaxies [3–5]. The theoretical framework of this analysis
has mostly been a Maxwell–Chern–Simons model [3,6], which
introduces a parameter with dimensions of energy and would
represent a correction to electrodynamics at very large scales
and very low energies.

A distinct possibility would be to investigate Lorentz violat-
ing effects due to highly energetic processes in light propaga-
tion. An excellent candidate to test such a phenomenon would
be the study of anisotropies in the Cosmic Microwave Back-
ground (CMB) radiation. This is because, even though the mean
temperature of CMB is only 2.275 K, it is just a relic of events
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which happened at the first epochs of our Universe—at the de-
coupling era or much earlier—where the typical energies were
high enough to spur new ultraviolet effects.1 Furthermore, even
a tiny asymmetric effect on the shifting of polarization planes
would be amplified due to the very large distances that those
photons have traveled around to reach us.

In this Letter, we will explore the reasonable possibility that
in the early epochs of our Universe, when it was mainly dom-
inated by radiation, the electromagnetic processes were not
necessarily described by standard relativistic theory. In other
words, Maxwell theory should be modified in the ultraviolet
regime. From this point of view our work would be closer to
the one of Myers and Pospelov [9].

One approach to modifying Lorentz symmetry at high en-
ergies invokes deformations of the Lorentz group involving an
invariant length (of the order of the Planck length) [10]. Such
deformations are, in fact, non-linear realizations of the Lorentz
group and they can be mapped to standard Lorentz transforma-
tions by a non-linear map of the momenta. The single-particle
dispersion relations, then, are mapped to the standard ones
under this map. These modified symmetries, however, do not
possess a non-trivial co-product; that is, there is no way to

1 For a recent discussion about this topic in the context of COBE and WMAP
see [7,8].
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compose two representations into a new representation of the
group, other than the standard one as obtained by the usual ad-
dition of momenta via the non-linear momentum map. As such,
there are no interacting field theories that realize the modified
transformations in a non-trivial way and therefore no physically
interesting effects.

We shall consider, instead, modifying the electromagnetic
theory by including small Lorentz violating terms in the La-
grangian. The main issue, of course, is what these modifications
might be and what are the criteria for selecting and including
relevant and reasonable contributions. An effective field theory
deriving from an underlying fundamental theory (string theory
or other), would involve in principle many possible ultraviolet
terms in the effective action, leaving the question for identify-
ing the relevant ones wide open.

In this Letter we take the approach of including a minimal
modification to the canonical structure of the electromagnetic
field theory, amounting to adding a tiny violation of the mi-
crocausality principle. This procedure, proposed in [11,12], in-
cludes small modifications to the canonical commutators in the
Maxwell theory

(1)
[
Ai(x),Aj (y)

] = εijkθkδ
(3)(x − y),

(2)
[
πi(x),πj (y)

] = εijkγkδ
(3)(x − y),

(3)
[
Ai(x),πj (y)

] = δij δ
(3)(x − y),

where i, j, . . . are spatial indices, θi and γi are two given
Lorentz violating vectors which play the role of ultraviolet and
infrared energy scales respectively.2

If we are interested in ultraviolet effects, we can neglect the
infrared scale (γ ∼ 0), and retain the corresponding ultraviolet
parameter.

The action that reproduces this modified electrodynamics
and is consistent with the commutators (1)–(3) is given by the
general form

(4)S =
∫

d4xL=
∫

d4x
1

2
Ωabψ

aψ̇b − V (ψ),

where ψa and ψ̇a are the coordinates and velocities with a =
1,2, . . . ,2n, and Ωab is a constant antisymmetric and regular
matrix. Here, V is a potential which modifies the free theory.
From this Lagrangian the Poisson structure obtains as

(5)
{
ψa,ψb

} = (
Ω−1)ab

.

We take, therefore, a set of fields {Ai(x),Fj (x)} with i, j =
1,2,3, whose Poisson brackets are,

{
Ai(x),Aj (y)

} = εijkθkδ
(3)(x − y),{

Ai(x),Fj (y)
} = δij δ

(3)(x − y),

(6)
{
Fi(x),Fj (y)

} = 0.

2 In fact, the |�θ | and | �γ | respectively.
In the basis ψa(x) = {A1,A2,A3,F1,F2,F3}, then, Ωab be-
comes

(7)Ωab =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 θ3 −θ2
0 1 0 −θ3 0 θ1
0 0 1 θ2 −θ1 0

⎞
⎟⎟⎟⎟⎟⎠

δ3(x − y).

In terms of these variables the Lagrangian can be written as

(8)L = 1

2

∫
d3x d3y Ωab(x − y)ψaψ̇b + V (ψ),

(9)=
∫

d3x

(
FiȦi + 1

2
εijkθkFiḞj

)
− V (A,F ).

Let us define Fi = F0i = −Fi0 = F i0 = −F 0i , Fij = ∂iAj −
∂jAi = F ij , and a new auxiliary variable A0 = −A0. Then we
can choose as potential V the following,

(10)V (A,F ) =
∫

d3x

(
−1

2
F0iF

0i − F 0i∂iA0 + 1

4
FijF

ij

)
.

This is the minimal potential that regains the standard electro-
dynamics when the θ parameters vanish. Or equivalently,

L =
∫

d3x

(
1

4
FμνFμν − 1

2
Fμν(∂μAν − ∂νAμ)

(11)+ 1

2
εijkθ

kF 0i∂0F
0j

)
.

The equations of motion as obtained by Hamilton’s principle
are

(12)F0i = ∂0Ai − ∂iA0 − εijkθj ∂0F0k,

(13)Fij = ∂iAj − ∂jAi,

(14)∂νF
μν = Jμ,

where Jμ represents a matter current coupled to Aμ.
By construction, this theory is gauge invariant if ∂μJμ = 0,

in the sense that a transformation of Aμ → Aμ + ∂μΔ for any
arbitrary function Δ, keeps the action and equations of motion
invariant. Then, the expression of F ’s in terms of A’s is given
by,

F0i =
(

1

I3 + Θ∂t

)
ij

(∂0Aj − ∂jA0),

Fij = ∂iAj − ∂jAi,

where I3 is the 3 × 3 identity matrix and Θij = εijkθk . Here it
is explicit that in terms of the Ai alone the theory is non-local
because of the non-local operator (I + Θ∂t )

−1 in the equation
of F0i in terms of Ai .

Let us define, as usual, the magnetic field,

Bi = 1

2
εijkF

ij ,

and the electric field,

Ei = F 0i .

This is the electric field that couples to matter, according to the
equations of motion. Note, thought, that this is not the usual
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electric field as defined in terms of the gauge potential fields.
We can define another electric field, which we will call “old
electric field”, as

Ẽi = −∂tA
i − ∂iA

0 = (δij + εijkθk∂t )Ej .

Then, the equations of motion without matter are,

(15)∂iEi = 0,

(16)Ėi = ( �∇ × �B)i,

(17)Ḃi = −( �∇ × �̃
E

)
i
,

where the last equation is just the Bianchi identity. This identity
can be read in terms of the electric field, i.e.,

(18)Ḃi = −( �∇ × �E )i − �θ · �∇Ėi ,

where we have made use of the Gauss law. Then, differentiating
one of the equations of motion with respect to time, we get,

(19)∂2Ei = −θmεijk∂m∂j Ėk,

where ∂2 = ∂2
t − �∇2. Expressing Ei in terms of its Fourier

transform,

Ei(x) =
∫

d3k εi(k)ei(ωt−�k·�x)

with the Gauss law implying that �k · �ε(k) = 0, we obtain[(
ω2 − �k2)δij − iω(�k · �θ)kkεijk

]
εj (k) = 0.

Diagonalizing this expression, and taking into account the
Gauss law, we obtain a dispersion relation with two different
modes,

(20)ω2 − k2(1 ± ωθ cosαkθ ) = 0,

where αkθ is the angle between �k and �θ , and θ is the length of
�θ . Equivalently,

ω± = k

[√
1 + 1

4
(�k · �θ )2 ± 1

2
(�k · �θ )

]
.

This theory, then, presents a birefringence, or Faraday-like ro-
tation effect with polarization planes shifted by an amount
proportional to �k ≈ ω2θ cosαkθ . This fact is similar to the
one in the model studied in [3–6]. However, in that model a
tiny Lorentz symmetry violating parameter affected equally the
whole spectrum, while here the effect is increasingly important
for higher frequencies. This is also unlike Lorenz violation in-
duced by space non-commutativity, which induces no Faraday-
like rotation [13].

Though the analysis of experimental data is beyond the
scope of our Letter, we think that it would be very interesting to
look for the effects of the above dipole anisotropy in the CMB
polarization—above and beyond the dipole anisotropy—due to
the relative motion of our galaxy with respect to the CMB rest
frame [15]. Other anisotropy effects on the polarization of the
CMB have been recently pointed out by Kosowsky et al. [14].
A randomized cosmological magnetic field could produce mul-
tipolar anisotropies in the CMB polarization. So, in order to
detect a Lorentz violation in the CMB polarization we should
take into account anisotropy effects of different origin, such as
this one.

The possibility of a tiny dipolar anisotropy at large scale in
the propagation of light through the Universe was pointed out
by Ralston and Nodland [4] who argued this fact by analyzing
data from polarized light coming from far galaxies. Carroll and
Field [5] reanalyzed the Ralston and Nodland method using an-
other procedure and suggested that, even though observational
data are not complete, the possibility of such anisotropy cannot
be totally ruled out.

As we have pointed out in the introduction, in the analyses of
the above works the authors used a theoretical model based on
a Chern–Simons like coupling as a test for a possible Lorentz
symmetry violation. In this work, we have considered another
possible scenario in which the dipolar anisotropy arises from
short distance effects. Which effect, if any, is backed by obser-
vational data is yet to be discovered.
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