335 research outputs found

    On Reconciling Gottfried Sum Rule Violation with Cabibbo Theory

    Get PDF
    We discuss the seemingly contradictory constraints of simultaneously preserving the SU(3)-symmetric Cabibbo description of the weak vector baryon matrix elements, accounting for SU(3) flavor symmetry breaking and describing the observed violation of the Gottfried Sum Rule. We try to construct a simple model that will satisfy these constraints and use it to explain the generic difficulties and tradeoffs.Comment: 10 pages, late

    Ground state correlations and mean-field in 16^{16}O

    Get PDF
    We use the coupled cluster expansion (exp(S)\exp(S) method) to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body G matrix inside the nucleus in which it is being used. This formalism is being applied to 16O^{16}O in a configuration space of 50 ω\hbar\omega. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of 16O^{16}O.Comment: 9 pages, 9 figures, LaTe

    Short-range correlations in low-lying nuclear excited states

    Get PDF
    The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.Comment: 6 pages, 2 postscript figures, 1 tabl

    The Magnetorotational Instability in Core Collapse Supernova Explosions

    Full text link
    We investigate the action of the magnetorotational instability (MRI) in the context of iron-core collapse. Exponential growth of the field on the rotation time scale by the MRI will dominate the linear growth process of field line "wrapping" with the same characteristic time. We examine a variety of initial rotation states, with solid body rotation or a gradient in rotational velocity, that correspond to models in the literature. A relatively modest value of the initial rotation, a period of ~ 10 s, will give a very rapidly rotating PNS and hence strong differential rotation with respect to the infalling matter. We assume conservation of angular momentum on spherical shells. Results are discussed for two examples of saturation fields, a fiducial field that corresponds to Alfven velocity = rotational velocity and a field that corresponds to the maximum growing mode of the MRI. Modest initial rotation velocities of the iron core result in sub-Keplerian rotation and a sub-equipartition magnetic field that nevertheless produce substantial MHD luminosity and hoop stresses: saturation fields of order 10^{15} - 10^{16} G develop within 300 msec after bounce with an associated MHD luminosity of about 10^{52} erg/s. Bi-polar flows driven by this MHD power can affect or even cause the explosions associated with core-collapse supernovae.Comment: 42 pages, including 15 figures. Accepted for publication in ApJ. We have revised to include an improved treatment of the convection, and some figures have been update

    Spin Contents of Nucleons with SU(3) Breaking

    Get PDF
    We apply a model for SU(3) breaking to the analysis of the spin contents of the nucleon from the the latest data on first moments of the spin dependent structure functions and include higher order QCD corrections. The results show that the value of the total quark spin contribution to the nucleon spin ΔΣΔu+Δd+Δs\Delta \Sigma \equiv \Delta u + \Delta d +\Delta s remains about 0.3 and is very insensitive to SU(3) breaking, while the result for the strange quark contribution varies considerably with SU(3) breaking.Comment: Six pages of LaTeX plus three figures (tarred, compressed, and uuencoded

    The Quark/Antiquark Asymmetry of the Nucleon Sea

    Get PDF
    Although the distributions of sea quarks and antiquarks generated by leading-twist QCD evolution through gluon splitting gqˉqg \rightarrow \bar q q are necessarily CP symmetric, the distributions of nonvalence quarks and antiquarks which are intrinsic to the nucleon's bound state wavefunction need not be identical. In this paper we investigate the sea quark/antiquark asymmetries in the nucleon wavefunction which are generated by a light-cone model of energetically-favored meson-baryon fluctuations. The model predicts striking quark/antiquark asymmetries in the momentum and helicity distributions for the down and strange contributions to the proton structure function: the intrinsic dd and ss quarks in the proton sea are predicted to be negatively polarized, whereas the intrinsic dˉ\bar d and sˉ\bar s antiquarks give zero contributions to the proton spin. Such a picture is supported by experimental phenomena related to the proton spin problem and the violation of the Ellis-Jaffe sum rule. The light-cone meson-baryon fluctuation model also suggests a structured momentum distribution asymmetry for strange quarks and antiquarks which could be relevant to an outstanding conflict between two different determinations of the strange quark sea in the nucleon. The model predicts an excess of intrinsic ddˉd \bar d pairs over uuˉu \bar u pairs, as supported by the Gottfried sum rule violation. We also predict that the intrinsic charm and anticharm helicity and momentum distributions are not identical.Comment: LaTex 18 pages, 4 figures. To obtain a copy, send e-mail to [email protected]

    Mass and width of the dd' resonance in nuclei

    Full text link
    We calculated the mass and width of the dd' resonance inside nuclei within a nucleon-Δ\Delta model by including the self-energy of the Δ\Delta in the NΔN\Delta propagator. We found that in the nuclear medium the width of the dd' is increased by one order of magnitude while its mass changes only by a few MeV. This broadening of the width of the dd' resonance embedded in nuclei is consistent with the experimental observations so that the dd' can be understood as a NΔN\Delta resonance. Thus, given the freedom between either isospin 0 or isospin 2 for the dd', our results give weigth to the isospin-2 assignment.Comment: 14 pages, RevteX type, 2 eps figures. To be published in Phys. Rev. C (September
    corecore